
MODERN
OPERATING

SYSTEMS
SECOND EDITION

PROBLEM SOLUTIONS

ANDREW S. TANENBAUM

Vrije Universiteit
Amsterdam, The Netherlands

PRENTICE HALL

UPPER SADDLE RIVER, NJ 07458

SOLUTIONS TO CHAPTER 1 PROBLEMS

1. An operating system must provide the users with an extended (i.e., virtual)
machine, and it must manage the I/O devices and other system resources.

2. Multiprogramming is the rapid switching of the CPU between multiple
processes in memory. It is commonly used to keep the CPU busy while one
or more processes are doing I/O.

3. Input spooling is the technique of reading in jobs, for example, from cards,
onto the disk, so that when the currently executing processes are finished,
there will be work waiting for the CPU. Output spooling consists of first
copying printable files to disk before printing them, rather than printing
directly as the output is generated. Input spooling on a personal computer is
not very likely, but output spooling is.

4. The prime reason for multiprogramming is to give the CPU something to do
while waiting for I/O to complete. If there is no DMA, the CPU is fully occu-
pied doing I/O, so there is nothing to be gained (at least in terms of CPU utili-
zation) by multiprogramming. No matter how much I/O a program does, the
CPU will be 100 percent busy. This of course assumes the major delay is the
wait while data are copied. A CPU could do other work if the I/O were slow
for other reasons (arriving on a serial line, for instance).

5. Second generation computers did not have the necessary hardware to protect
the operating system from malicious user programs.

6. It is still alive. For example, Intel makes Pentium I, II, and III, and 4 CPUs
with a variety of different properties including speed and power consumption.
All of these machines are architecturally compatible. They differ only in
price and performance, which is the essence of the family idea.

7. A 25 × 80 character monochrome text screen requires a 2000-byte buffer. The
1024 × 768 pixel 24-bit color bitmap requires 2,359,296 bytes. In 1980 these
two options would have cost $10 and $11,520, respectively. For current
prices, check on how much RAM currently costs, probably less than $1/MB.

8. Choices (a), (c), and (d) should be restricted to kernel mode.

9. Personal computer systems are always interactive, often with only a single
user. Mainframe systems nearly always emphasize batch or timesharing with
many users. Protection is much more of an issue on mainframe systems, as is
efficient use of all resources.

10. Every nanosecond one instruction emerges from the pipeline. This means the
machine is executing 1 billion instructions per second. It does not matter at
all how many stages the pipeline has. A 10-stage pipeline with 1 nsec per

2 PROBLEM SOLUTIONS FOR CHAPTER 1

stage would also execute 1 billion instructions per second. All that matters is
how often a finished instructions pops out the end of the pipeline.

11. The manuscript contains 80 × 50 × 700 = 2.8 million characters. This is, of
course, impossible to fit into the registers of any currently available CPU and
is too big for a 1-MB cache, but if such hardware were available, the
manuscript could be scanned in 2.8 msec from the registers or 5.8 msec from
the cache. There are approximately 2700 1024-byte blocks of data, so scan-
ning from the disk would require about 27 seconds, and from tape 2 minutes 7
seconds. Of course, these times are just to read the data. Processing and
rewriting the data would increase the time.

12. Logically, it does not matter if the limit register uses a virtual address or a
physical address. However, the performance of the former is better. If virtual
addresses are used, the addition of the virtual address and the base register
can start simultaneously with the comparison and then can run in parallel. If
physical addresses are used, the comparison cannot start until the addition is
complete, increasing the access time.

13. Maybe. If the caller gets control back and immediately overwrites the data,
when the write finally occurs, the wrong data will be written. However, if the
driver first copies the data to a private buffer before returning, then the caller
can be allowed to continue immediately. Another possibility is to allow the
caller to continue and give it a signal when the buffer may be reused, but this
is tricky and error prone.

14. A trap is caused by the program and is synchronous with it. If the program is
run again and again, the trap will always occur at exactly the same position in
the instruction stream. An interrupt is caused by an external event and its
timing is not reproducible.

15. Base = 40,000 and limit = 10,000. An answer of limit = 50,000 is incorrect
for the way the system was described in this book. It could have been imple-
mented that way, but doing so would have required waiting until the address
+ base calculation was completed before starting the limit check, thus slow-
ing down the computer.

16. The process table is needed to store the state of a process that is currently
suspended, either ready or blocked. It is not needed in a single process sys-
tem because the single process is never suspended.

17. Mounting a file system makes any files already in the mount point directory
inaccessible, so mount points are normally empty. However, a system
administrator might want to copy some of the most important files normally
located in the mounted directory to the mount point so they could be found in
their normal path in an emergency when the mounted device was being
checked or repaired.

PROBLEM SOLUTIONS FOR CHAPTER 1 3

18. Fork can fail if there are no free slots left in the process table (and possibly if
there is no memory or swap space left). Exec can fail if the file name given
does not exist or is not a valid executable file. Unlink can fail if the file to be
unlinked does not exist or the calling process does not have the authority to
unlink it.

19. If the call fails, for example because fd is incorrect, it can return −1. It can
also fail because the disk is full and it is not possible to write the number of
bytes requested. On a correct termination, it always returns nbytes.

20. It contains the bytes: 1, 5, 9, 2.

21. Block special files consist of numbered blocks, each of which can be read or
written independently of all the other ones. It is possible to seek to any block
and start reading or writing. This is not possible with character special files.

22. System calls do not really have names, other than in a documentation sense.
When the library procedure read traps to the kernel, it puts the number of the
system call in a register or on the stack. This number is used to index into a
table. There is really no name used anywhere. On the other hand, the name
of the library procedure is very important, since that is what appears in the
program.

23. Yes it can, especially if the kernel is a message-passing system.

24. As far as program logic is concerned it does not matter whether a call to a
library procedure results in a system call. But if performance is an issue, if a
task can be accomplished without a system call the program will run faster.
Every system call involves overhead time in switching from the user context
to the kernel context. Furthermore, on a multiuser system the operating sys-
tem may schedule another process to run when a system call completes,
further slowing the progress in real time of a calling process.

25. Several UNIX calls have no counterpart in the Win32 API:

Link: a Win32 program cannot refer to a file by an alternate name or see it in
more than one directory. Also, attempting to create a link is a convenient way
to test for and create a lock on a file.

Mount and umount: a Windows program cannot make assumptions about
standard path names because on systems with multiple disk drives the drive
name part of the path may be different.

Chmod: Windows programmers have to assume that every user can access
every file.

Kill: Windows programmers cannot kill a misbehaving program that is not
cooperating.

4 PROBLEM SOLUTIONS FOR CHAPTER 1

26. The conversions are straightforward:

(a) A micro year is 10−6 × 365 × 24 × 3600 = 31.536 sec.
(b) 1000 meters or 1 km.
(c) There are 240 bytes, which is 1,099,511,627,776 bytes.
(d) It is 6 × 1024 kg.

SOLUTIONS TO CHAPTER 2 PROBLEMS

1. The transition from blocked to running is conceivable. Suppose that a proc-
ess is blocked on I/O and the I/O finishes. If the CPU is otherwise idle, the
process could go directly from blocked to running. The other missing transi-
tion, from ready to blocked, is impossible. A ready process cannot do I/O or
anything else that might block it. Only a running process can block.

2. You could have a register containing a pointer to the current process table
entry. When I/O completed, the CPU would store the current machine state
in the current process table entry. Then it would go to the interrupt vector for
the interrupting device and fetch a pointer to another process table entry (the
service procedure). This process would then be started up.

3. Generally, high-level languages do not allow one the kind of access to CPU
hardware that is required. For instance, an interrupt handler may be required
to enable and disable the interrupt servicing a particular device, or to manipu-
late data within a process’ stack area. Also, interrupt service routines must
execute as rapidly as possible.

4. There are several reasons for using a separate stack for the kernel. Two of
them are as follows. First, you do not want the operating system to crash
because a poorly written user program does not allow for enough stack space.
Second, if the kernel leaves stack data in a user program’s memory space
upon return from a system call, a malicious user might be able to use this data
to find out information about other processes.

5. It would be difficult, if not impossible, to keep the file system consistent.
Suppose that a client process sends a request to server process 1 to update a
file. This process updates the cache entry in its memory. Shortly thereafter,
another client process sends a request to server 2 to read that file. Unfor-
tunately, if the file is also cached there, server 2, in its innocence, will return
obsolete data. If the first process writes the file through to the disk after cach-
ing it, and server 2 checks the disk on every read to see if its cached copy is
up-to-date, the system can be made to work, but it is precisely all these disk
accesses that the caching system is trying to avoid.

PROBLEM SOLUTIONS FOR CHAPTER 2 5

6. When a thread is stopped, it has values in the registers. They must be saved,
just as when the process is stopped the registers must be saved. Timesharing
threads is no different than timesharing processes, so each thread needs its
own register save area.

7. No. If a single-threaded process is blocked on the keyboard, it cannot fork.

8. A worker thread will block when it has to read a Web page from the disk. If
user-level threads are being used, this action will block the entire process,
destroying the value of multithreading. Thus it is essential that kernel threads
are used to permit some threads to block without affecting the others.

9. Threads in a process cooperate. They are not hostile to one another. If yield-
ing is needed for the good of the application, then a thread will yield. After
all, it is usually the same programmer who writes the code for all of them.

10. User-level threads cannot be preempted by the clock uless the whole process’
quantum has been used up. Kernel-level threads can be preempted individu-
ally. In the latter case, if a thread runs too long, the clock will interrupt the
current process and thus the current thread. The kernel is free to pick a dif-
ferent thread from the same process to run next if it so desires.

11. In the single-threaded case, the cache hits take 15 msec and cache misses take
90 msec. The weighted average is 2/3 × 15 + 1 /3 × 90. Thus the mean
request takes 40 msec and the server can do 25 per second. For a mul-
tithreaded server, all the waiting for the disk is overlapped, so every request
takes 15 msec, and the server can handle 66 2/3 requests per second.

12. Yes. If the server is entirely CPU bound, there is no need to have multiple
threads. It just adds unnecessary complexity. As an example, consider a tele-
phone directory assistance number (like 555-1212) for an area with 1 million
people. If each (name, telephone number) record is, say, 64 characters, the
entire database takes 64 megabytes, and can easily be kept in the server’s
memory to provide fast lookup.

13. The pointers are really necessary because the size of the global variable is
unknown. It could be anything from a character to an array of floating-point
numbers. If the value were stored, one would have to give the size to
create3global, which is all right, but what type should the second parameter
of set3global be, and what type should the value of read3global be?

14. It could happen that the runtime system is precisely at the point of blocking or
unblocking a thread, and is busy manipulating the scheduling queues. This
would be a very inopportune moment for the clock interrupt handler to begin
inspecting those queues to see if it was time to do thread switching, since they
might be in an inconsistent state. One solution is to set a flag when the run-
time system is entered. The clock handler would see this and set its own flag,

6 PROBLEM SOLUTIONS FOR CHAPTER 2

then return. When the runtime system finished, it would check the clock flag,
see that a clock interrupt occurred, and now run the clock handler.

15. Yes it is possible, but inefficient. A thread wanting to do a system call first
sets an alarm timer, then does the call. If the call blocks, the timer returns
control to the threads package. Of course, most of the time the call will not
block, and the timer has to be cleared. Thus each system call that might
block has to be executed as three system calls. If timers go off prematurely,
all kinds of problems can develop. This is not an attractive way to build a
threads package.

16. The priority inversion problem occurs when a low-priority process is in its
critical region and suddenly a high-priority process becomes ready and is
scheduled. If it uses busy waiting, it will run forever. With user-level
threads, it cannot happen that a low-priority thread is suddenly preempted to
allow a high-priority thread run. There is no preemption. With kernel-level
threads this problem can arise.

17. Each thread calls procedures on its own, so it must have its own stack for the
local variables, return addresses, and so on. This is equally true for user-level
threads as for kernel-level threads.

18. A race condition is a situation in which two (or more) processes are about to
perform some action. Depending on the exact timing, one or the other goes
first. If one of the processes goes first, everything works, but if another one
goes first, a fatal error occurs.

19. Yes. The simulated computer could be multiprogrammed. For example,
while process A is running, it reads out some shared variable. Then a simu-
lated clock tick happens and process B runs. It also reads out the same vari-
able. Then it adds 1 to the variable. When process A runs, if it also adds one
to the variable, we have a race condition.

20. Yes, it still works, but it still is busy waiting, of course.

21. It certainly works with preemptive scheduling. In fact, it was designed for
that case. When scheduling is nonpreemptive, it might fail. Consider the
case in which turn is initially 0 but process 1 runs first. It will just loop for-
ever and never release the CPU.

22. Yes it can. The memory word is used as a flag, with 0 meaning that no one is
using the critical variables and 1 meaning that someone is using them. Put a
1 in the register, and swap the memory word and the register. If the register
contains a 0 after the swap, access has been granted. If it contains a 1, access
has been denied. When a process is done, it stores a 0 in the flag in memory.

PROBLEM SOLUTIONS FOR CHAPTER 2 7

23. To do a semaphore operation, the operating system first disables interrupts.
Then it reads the value of the semaphore. If it is doing a down and the sema-
phore is equal to zero, it puts the calling process on a list of blocked processes
associated with the semaphore. If it is doing an up, it must check to see if any
processes are blocked on the semaphore. If one or more processes are
blocked, one of then is removed from the list of blocked processes and made
runnable. When all these operations have been completed, interrupts can be
enabled again.

24. Associated with each counting semaphore are two binary semaphores, M,
used for mutual exclusion, and B, used for blocking. Also associated with
each counting semaphore is a counter that holds the number of ups minus the
number of downs, and a list of processes blocked on that semaphore. To
implement down, a process first gains exclusive access to the semaphores,
counter, and list by doing a down on M. It then decrements the counter. If it
is zero or more, it just does an up on M and exits. If M is negative, the proc-
ess is put on the list of blocked processes. Then an up is done on M and a
down is done on B to block the process. To implement up, first M is downed
to get mutual exclusion, and then the counter is incremented. If it is more
than zero, no one was blocked, so all that needs to be done is to up M. If,
however, the counter is now negative or zero, some process must be removed
from the list. Finally, an up is done on B and M in that order.

25. If the program operates in phases and neither process may enter the next
phase until both are finished with the current phase, it makes perfect sense to
use a barrier.

26. With round-robin scheduling it works. Sooner or later L will run, and eventu-
ally it will leave its critical region. The point is, with priority scheduling, L
never gets to run at all; with round robin, it gets a normal time slice periodi-
cally, so it has the chance to leave its critical region.

27. With kernel threads, a thread can block on a semaphore and the kernel can
run some other thread in the same process. Consequently, there is no problem
using semaphores. With user-level threads, when one thread blocks on a
semaphore, the kernel thinks the entire process is blocked and does not run it
ever again. Consequently, the process fails.

28. It is very expensive to implement. Each time any variable that appears in a
predicate on which some process is waiting changes, the runtime system must
re-evaluate the predicate to see if the process can be unblocked. With the
Hoare and Brinch Hansen monitors, processes can only be awakened on a sig-
nal primitive.

8 PROBLEM SOLUTIONS FOR CHAPTER 2

29. The employees communicate by passing messages: orders, food, and bags in
this case. In UNIX terms, the four processes are connected by pipes.

30. It does not lead to race conditions (nothing is ever lost), but it is effectively
busy waiting.

31. If a philosopher blocks, neighbors can later see that he is hungry by checking
his state, in test, so he can be awakened when the forks are available.

32. The change would mean that after a philosopher stopped eating, neither of his
neighbors could be chosen next. In fact, they would never be chosen. Sup-
pose that philosopher 2 finished eating. He would run test for philosophers 1
and 3, and neither would be started, even though both were hungry and both
forks were available. Similary, if philosopher 4 finished eating, philosopher 3
would not be started. Nothing would start him.

33. Variation 1: readers have priority. No writer may start when a reader is
active. When a new reader appears, it may start immediately unless a writer is
currently active. When a writer finishes, if readers are waiting, they are all
started, regardless of the presence of waiting writers. Variation 2: Writers
have priority. No reader may start when a writer is waiting. When the last
active process finishes, a writer is started, if there is one; otherwise, all the
readers (if any) are started. Variation 3: symmetric version. When a reader is
active, new readers may start immediately. When a writer finishes, a new
writer has priority, if one is waiting. In other words, once we have started
reading, we keep reading until there are no readers left. Similarly, once we
have started writing, all pending writers are allowed to run.

34. It will need nT sec.

35. If a process occurs multiple times in the list, it will get multiple quanta per
cycle. This approach could be used to give more important processes a larger
share of the CPU. But when the process blocks, all entries had better be
removed from the list of runnable processes.

36. In simple cases it may be possible to determine whether I/O will be limiting
by looking at source code. For instance a program that reads all its input files
into buffers at the start will probably not be I/O bound, but a problem that
reads and writes incrementally to a number of different files (such as a com-
piler) is likely to be I/O bound. If the operating system provides a facility
such as the UNIX ps command that can tell you the amount of CPU time used
by a program , you can compare this with total time to complete execution of
the program. This is, of course, most meaningful on a system where you are
the only user.

37. For multiple processes in a pipeline, the common parent could pass to the
operating system information about the flow of data. With this information

PROBLEM SOLUTIONS FOR CHAPTER 2 9

the OS could, for instance, determine which process could supply output to a
process blocking on a call for input.

38. The CPU efficiency is the useful CPU time divided by the total CPU time.
When Q ≥ T, the basic cycle is for the process to run for T and undergo a
process switch for S. Thus (a) and (b) have an efficiency of T /(S + T). When
the quantum is shorter than T, each run of T will require T /Q process
switches, wasting a time ST /Q. The efficiency here is then

T + ST /Q
T333333333

which reduces to Q /(Q + S), which is the answer to (c). For (d), we just sub-
stitute Q for S and find that the efficiency is 50 percent. Finally, for (e), as
Q → 0 the efficiency goes to 0.

39. Shortest job first is the way to minimize average response time.
0 < X ≤ 3: X, 3, 5, 6, 9.
3 < X ≤ 5: 3, X, 5, 6, 9.
5 < X ≤ 6: 3, 5, X, 6, 9.
6 < X ≤ 9: 3, 5, 6, X, 9.
X > 9: 3, 5, 6, 9, X.

40. For round robin, during the first 10 minutes each job gets 1/5 of the CPU. At
the end of 10 minutes, C finishes. During the next 8 minutes, each job gets
1/4 of the CPU, after which time D finishes. Then each of the three remain-
ing jobs gets 1/3 of the CPU for 6 minutes, until B finishes, and so on. The
finishing times for the five jobs are 10, 18, 24, 28, and 30, for an average of
22 minutes. For priority scheduling, B is run first. After 6 minutes it is
finished. The other jobs finish at 14, 24, 26, and 30, for an average of 18.8
minutes. If the jobs run in the order A through E, they finish at 10, 16, 18, 22,
and 30, for an average of 19.2 minutes. Finally, shortest job first yields
finishing times of 2, 6, 12, 20, and 30, for an average of 14 minutes.

41. The first time it gets 1 quantum. On succeeding runs it gets 2, 4, 8, and 15, so
it must be swapped in 5 times.

42. A check could be made to see if the program was expecting input and did
anything with it. A program that was not expecting input and did not process
it would not get any special priority boost.

43. The sequence of predictions is 40, 30, 35, and now 25.

44. The fraction of the CPU used is 35/50 + 20/100 + 10/200 + x/250. To be
schedulable, this must be less than 1. Thus x must be less than 12.5 msec.

45. Two-level scheduling is needed when memory is too small to hold all the
ready processes. Some set of them is put into memory, and a choice is made

10 PROBLEM SOLUTIONS FOR CHAPTER 2

from that set. From time to time, the set of in-core processes is adjusted.
This algorithm is easy to implement and reasonably efficient, certainly a lot
better than say, round robin without regard to whether a process was in
memory or not.

46. The kernel could schedule processes by any means it wishes, but within each
process it runs threads strictly in priority order. By letting the user process set
the priority of its own threads, the user controls the policy but the kernel han-
dles the mechanism.

47. A possible shell script might be

if [! –f numbers]; then echo 0 > numbers; fi
count=0
while (test $count != 200)
do

count=‘expr $count + 1 ‘
n=‘tail –1 numbers‘
expr $n + 1 >>numbers

done

Run the script twice simultaneously, by starting it once in the background
(using &) and again in the foreground. Then examine the file numbers. It
will probably start out looking like an orderly list of numbers, but at some
point it will lose its orderliness, due to the race condition created by running
two copies of the script. The race can be avoided by having each copy of the
script test for and set a lock on the file before entering the critical area, and
unlocking it upon leaving the critical area. This can be done like this:

if ln numbers numbers.lock
then

n=‘tail –1 numbers‘
expr $n + 1 >>numbers
rm numbers.lock

fi

This version will just skip a turn when the file is inaccessible, variant solu-
tions could put the process to sleep, do busy waiting, or count only loops in
which the operation is successful.

SOLUTIONS TO CHAPTER 3 PROBLEMS

1. In the U.S., consider a presidential election in which three or more candidates
are trying for the nomination of some party. After all the primary elections

PROBLEM SOLUTIONS FOR CHAPTER 3 11

are finished, when the delegates arrive at the party convention, it could hap-
pen that no candidate has a majority and that no delegate is willing to change
his or her vote. This is a deadlock. Each candidate has some resources
(votes) but needs more to get the job done. In countries with multiple politi-
cal parties in the parliament, it could happen that each party supports a dif-
ferent version of the annual budget and that it is impossible to assemble a
majority to pass the budget. This is also a deadlock.

2. If the printer starts to print a file before the entire file has been received (this
is often allowed to speed response), the disk may fill with other requests that
can’t be printed until the first file is done, but which use up disk space needed
to receive the file currently being printed. If the spooler does not start to print
a file until the entire file has been spooled it can reject a request that is too
big. Starting to print a file is equivalent to reserving the printer; if the reserva-
tion is deferred until it is known that the entire file can be received, a
deadlock of the entire system can be avoided. The user with the file that
won’t fit is still deadlocked of course, and must go to another facility that per-
mits printing bigger files.

3. The printer is nonpreemptable; the system cannot start printing another job
until the previous one is complete. The spool disk is preemptable; you can
delete an incomplete file that is growing too large and have the user send it
later, assuming the protocol allows that

4. Yes. It does not make any difference whatsoever.

5. Yes, illegal graphs exist. We stated that a resource may only be held by a
single process. An arc from a resource square to a process circle indicates
that the process owns the resource. Thus a square with arcs going from it to
two or more processes means that all those processes hold the resource,
which violates the rules. Consequently, any graph in which multiple arcs
leave a square and end in different circles violates the rules. Arcs from
squares to squares or from circles to circles also violate the rules.

6. A portion of all such resources could be reserved for use only by processes
owned by the administrator, so he or she could always run a shell and pro-
grams needed to evaluate a deadlock and make decisions about which
processes to kill to make the system usable again.

7. Neither change leads to deadlock. There is no circular wait in either case.

8. Voluntary relinquishment of a resource is most similar to recovery through
preemption. The essential difference is that computer processes are not
expected to solve such problems on their own. Preemption is analogous to the
operator or the operating system acting as a policeman, overriding the normal
rules individual processes obey.

12 PROBLEM SOLUTIONS FOR CHAPTER 3

9. The process is asking for more resources than the system has. There is no
conceivable way it can get these resources, so it can never finish, even if no
other processes want any resources at all.

10. If the system had two or more CPUs, two or more processes could run in
parallel, leading to diagonal trajectories.

11. Yes. Do the whole thing in three dimensions. The z-axis measures the
number of instructions executed by the third process.

12. The method can only be used to guide the scheduling if the exact instant at
which a resource is going to be claimed is known in advance. In practice, this
is rarely the case.

13. A request from D is unsafe, but one from C is safe.

14. There are states that are neither safe nor deadlocked, but which lead to
deadlocked states. As an example, suppose we have four resources: tapes,
plotters, scanners, and CD-ROMs, as in the text, and three processes compet-
ing for them. We could have the following situation:

Has Needs Available
A: 2 0 0 0 1 0 2 0 0 1 2 1
B: 1 0 0 0 0 1 3 1
C: 0 1 2 1 1 0 1 0

This state is not deadlocked because many actions can still occur, for exam-
ple, A can still get two printers. However, if each process asks for its remain-
ing requirements, we have a deadlock.

15. The system is deadlock free. Suppose that each process has one resource.
There is one resource free. Either process can ask for it and get it, in which
case it can finish and release both resources. Consequently deadlock is
impossible.

16. If a process has m resources it can finish and cannot be involved in a
deadlock. Therefore, the worst case is where every process has m − 1
resources and needs another one. If there is one resource left over, one proc-
ess can finish and release all its resources, letting the rest finish too. There-
fore the condition for avoiding deadlock is r ≥ p(m − 1) + 1.

17. No. D can still finish. When it finishes, it returns enough resources to allow
E (or A) to finish, and so on.

18. With three processes, each one can have two drives. With four processes, the
distribution of drives will be (2, 2, 1, 1), allowing the first two processes to
finish. With five processes, the distribution will be (2, 1, 1, 1, 1), which still
allows the first one to finish. With six, each holding one tape drive and want-
ing another, we have a deadlock. Thus for n < 6 the system is deadlock-free.

PROBLEM SOLUTIONS FOR CHAPTER 3 13

19. Comparing a row in the matrix to the vector of available resources takes m
operations. This step must be repeated on the order of n times to find a proc-
ess that can finish and be marked as done. Thus marking a process as done
takes on the order or mn steps. Repeating the algorithm for all n processes
means that the number of steps is then mn 2.

20. The needs matix is as follows:

0 1 0 0 2
0 2 1 0 0
1 0 3 0 0
0 0 1 1 1

If x is 0, we have a deadlock immediately. If x is 1, process D can run to
completion. When it is finished, the available vector is 1 1 2 2 1. Unfor-
tunately we are now deadlocked. If x is 2, after D runs, the available vector is
1 1 3 2 1 and C can run. After it finishes and returns its resources the avail-
able vector is 2 2 3 3 1, which will allow B to run and complete, and then A to
run and complete. Therefore, the smallest value of x that avoids a deadlock is
2.

21. Yes. Suppose that all the mailboxes are empty. Now A sends to B and waits
for a reply, B sends to C and waits for a reply, and C sends to A and waits for
a reply. All the conditions for deadlock are now fulfilled.

22. Suppose that process A requests the records in the order a, b, c. If process B
also asks for a first, one of them will get it and the other will block. This
situation is always deadlock free since the winner can now run to completion
without interference. Of the four other combinations, some may lead to
deadlock and some are deadlock free. The six cases are as follows:

a b c deadlock free
a c b deadlock free
b a c possible deadlock
b c a possible deadlock
c a b possible deadlock
c b a possible deadlock

Since four of the six may lead to deadlock, there is a 1/3 chance of avoiding a
deadlock and a 2/3 chance of getting one.

23. Two-phase locking eliminates deadlocks, but introduces potential starvation.
A process has to keep trying and failing to acquire all of its records. There is
no upper bound on how long it may take.

24. To avoid circular wait, number the resources (the accounts) with their account
numbers. After reading an input line, a process locks the lower-numbered

14 PROBLEM SOLUTIONS FOR CHAPTER 3

account first, then when it gets the lock (which may entail waiting), it locks
the other one. Since no process ever waits for an account lower than what it
already has, there is never a circular wait, hence never a deadlock.

25. Change the semantics of requesting a new resource as follows. If a process
asks for a new resource and it is available, it gets the resource and keeps what
it already has. If the new resource is not available, all existing resources are
released. With this scenario, deadlock is impossible and there is no danger
that the new resource is acquired but existing ones lost. Of course, the proc-
ess only works if releasing a resource is possible (you can release a scanner
between pages or a CD recorder between CDs).

26. I’d give it an F (failing) grade. What does the process do? Since it clearly
needs the resource, it just asks again and blocks again. This is no better than
staying blocked. In fact, it may be worse since the system may keep track of
how long competing processes have been waiting and assign a newly freed
resource to the process that has been waiting longest. By periodically timing
out and trying again, a process loses its seniority.

27. If both programs ask for Woofer first, the computers will starve with the end-
less sequence: request Woofer, cancel request, request Woofer, cancel
request, etc. If one of them asks for the doghouse and the other asks for the
dog, we have a deadlock, which is detected by both parties and then broken,
but it is just repeated on the next cycle. Either way, if both computers have
been programmed to go after the dog or the doghouse first, either starvation or
deadlock ensues. There is not really much difference between the two here.
In most deadlock problems, starvation does not seem serious because intro-
ducing random delays will usually make it very unlikely. That approach does
not work here.

SOLUTIONS TO CHAPTER 4 PROBLEMS

1. The chance that all four processes are idle is 1/16, so the CPU idle time is
1/16.

2. If each job has 50% I/O wait, then it will take 20 minutes to complete in the
absence of competition. If run sequentially, the second one will finish 40
minutes after the first one starts. With two jobs, the approximate CPU utiliza-
tion is 1 − 0.52. Thus each one gets 0.375 CPU minute per minute of real
time. To accumulate 10 minutes of CPU time, a job must run for 10/0.375
minutes or about 26.67 minutes. Thus running sequentially the jobs finish
after 40 minutes, but running in parallel they finish after 26.67 minutes.

3. Almost the entire memory has to be copied, which requires each word to be
read and then rewritten at a different location. Reading 4 bytes takes 10 nsec,

PROBLEM SOLUTIONS FOR CHAPTER 4 15

so reading 1 byte takes 2.5 nsec and writing it takes another 2.5 nsec, for a
total of 5 nsec per byte compacted. This is a rate of 200,000,000 bytes/sec.
To copy 128 MB (227 bytes, which is about 1.34 × 108 bytes), the computer
needs 227 /200,000,000 sec, which is about 671 msec. This number is slightly
pessimistic because if the initial hole at the bottom of memory is k bytes,
those k bytes do not need to be copied. However, if there are many holes and
many data segments, the holes will be small so k will be small and the error in
the calculation will also be small.

4. The bitmap needs 1 bit per allocation unit. With 227 /n allocation units, this is
224 /n bytes. The linked list has 227 /216 or 211 nodes, each of 8 bytes for a
total of 214 bytes. For small n, the linked list is better. For large n, the bit-
map is better. The crossover point can be calculated by equating these two
formulas and solving for n. The result is 1 KB. For n smaller than 1 KB, a
linked list is better. For n larger than 1 KB, a bitmap is better. Of course, the
assumption of segments and holes alternating every 64 KB is very unrealistic.
Also, we need n <= 64 KB if the segments and holes are 64 KB.

5. First fit takes 20 KB, 10 KB, 18 KB. Best fit takes 12 KB, 10 KB, and 9 KB.
Worst fit takes 20 KB, 18 KB, and 15 KB. Next fit takes 20 KB, 18 KB, and 9
KB.

6. Real memory uses physical addresses. These are the numbers that the
memory chips react to on the bus. Virtual addresses are the logical addresses
that refer to a process’ address space. Thus a machine with a 16-bit word can
generate virtual addresses up to 64K, regardless of whether the machine has
more or less memory than 64 KB.

7. For a 4-KB page size the (page, offset) pairs are (4, 3616), (8, 0), and (14,
2656). For an 8-KB page size they are (2, 3616), (4, 0), (7, 2656).

8. (a) 8212 (b) 4100 (c) 24684

9. They built an MMU and inserted it between the 8086 and the bus. Thus all
8086 physical addresses went into the MMU as virtual addresses. The MMU
then mapped them onto physical addresses, which went to the bus.

10. The total virtual address space for all the processes combined is nv so this
much storage is needed for pages. However an amount r can be in RAM, so
the amount of disk storage required is only nv − r. This amount is far more
than is ever needed in practice because rarely will there be n processes actu-
ally running and even more rarely will all of them need the maximum allowed
virtual memory.

11. A page fault every k instructions adds an extra overhead of n /k µsec to the
average, so the average instruction takes 10 + n /k nsec.

16 PROBLEM SOLUTIONS FOR CHAPTER 4

12. The page table contains 232 /213 entries, which is 524,288. Loading the page
table takes 52 msec. If a process gets 100 msec, this consists of 52 msec for
loading the page table and 48 msec for running. Thus 52 percent of the time
is spent loading page tables.

13. Twenty bits are used for the virtual page numbers, leaving 12 over for the
offset. This yields a 4-KB page. Twenty bits for the virtual page implies 220

pages.

14. The number of pages depends on the total number of bits in a, b, and c com-
bined. How they are split among the fields does not matter.

15. For a one-level page table, there are 232 /212 or 1M pages needed. Thus the
page table must have 1M entries. For two-level paging, the main page table
has 1K entries, each of which points to a second page table. Only two of
these are used. Thus in total only three page table entries are needed, one in
the top-level table and one in each of the lower-level tables.

16. The code and reference string is as follows

LOAD 6144,R0 1(I), 12(D)
PUSH R0 2(I), 15(D)
CALL 5120 2(I), 15(D)
JEQ 5152 10(I)

The code (I) indicates an instruction reference, whereas (D) indicates a data
reference.

17. The effective instruction time is 1h + 5(1 − h), where h is the hit rate. If we
equate this formula with 2 and solve for h, we find that h must be at least
0.75.

18. The R bit is never needed in the TLB. The mere presence of a page there
means the page has been referenced; otherwise it would not be there. Thus
the bit is completely redundant. When the entry is written back to memory,
however, the R bit in the memory page table is set.

19. An associative memory essentially compares a key to the contents of multiple
registers simultaneously. For each register there must be a set of comparators
that compare each bit in the register contents to the key being searched for.
The number of gates (or transistors) needed to implement such a device is a
linear function of the number of registers, so expanding the design gets
expensive linearly.

20. With 8-KB pages and a 48-bit virtual address space, the number of virtual
pages is 248 /213, which is 235 (about 34 billion).

21. The main memory has 228 /213 = 32,768 pages. A 32K hash table will have a
mean chain length of 1. To get under 1, we have to go to the next size,

PROBLEM SOLUTIONS FOR CHAPTER 4 17

65,536 entries. Spreading 32,768 entries over a 65,536 table slots will give a
mean chain length of 0.5, which ensures fast lookup.

22. This is probably not possible except for the unusual and not very useful case
of a program whose course of execution is completely predictable at compila-
tion time. If a compiler collects information about the locations in the code of
calls to procedures, this information might be used at link time to rearrange
the object code so procedures were located close to the code that calls them.
This would make it more likely that a procedure would be on the same page
as the calling code. Of course this would not help much for procedures called
from many places in the program.

23. The page frames for FIFO are as follows:

x0172333300 xx017222233 xxx01777722 xxxx0111177

The page frames for LRU are as follows:

x0172327103 xx017232710 xxx01773271 xxxx0111327

FIFO yields 6 page faults; LRU yields 7.

24. The first page with a 0 bit will be chosen, in this case D.

25. The counters are
Page 0: 0110110
Page 1: 01001001
Page 2: 00110111
Page 3: 10001011

26. The first page with R = 0 and age > τ will be chosen. Since the scan starts at
the bottom, the very first page (1620) gets evicted.

27. The age of the page is 2204 − 1213 = 991. If τ = 400, it is definitely out of
the working set and it was not recently referenced so it will be evicted. The
τ = 1000 the situation is different. Now the page falls within the working set
(barely), so it is not removed.

28. The seek plus rotational latency is 20 msec. For 2-KB pages, the transfer
time is 1.25 msec, for a total of 21.25 msec. Loading 32 of these pages will
take 680 msec. For 4-KB pages, the transfer time is doubled to 2.5 msec, so
the total time per page is 22.50 msec. Loading 16 of these pages takes 360
msec.

29. NRU removes page 2. FIFO removes page 3. LRU removes page 1. Second
chance removes page 2.

30. The PDP-1 paging drum had the advantage of no rotational latency. This
saved half a rotation each time memory was written to the drum.

18 PROBLEM SOLUTIONS FOR CHAPTER 4

31. The text is eight pages, the data are five pages, and the stack is four pages.
The program does not fit because it needs 17 4096-byte pages. With a 512-
byte page, the situation is different. Here the text is 64 pages, the data are 33
pages, and the stack is 31 pages, for a total of 128 512-byte pages, which fits.
With the small page size it is ok, but not with the large one.

32. If pages can be shared, yes. For example, if two users of a timesharing sys-
tem are running the same editor at the same time and the program text is
shared rather than copied, some of those pages may be in each user’s working
set at the same time.

33. It is possible. Assuming that segmentation is not present, the protection infor-
mation must be in the page table. If each process has its own page table, each
one also has its own protection bits. They could be different.

34. The program is getting 15,000 page faults, each of which uses 2 msec of extra
processing time. Together, the page fault overhead is 30 sec. This means
that of the 60 sec used, half was spent on page fault overhead, and half on
running the program. If we run the program with twice as much memory, we
get half as memory page faults, and only 15 sec of page fault overhead, so the
total run time will be 45 sec.

35. It works for the program if the program cannot be modified. It works for the
data if the data cannot be modified. However, it is common that the program
cannot be modified and extremely rare that the data cannot be modified. If
the data area on the binary file were overwritten with updated pages, the next
time the program was started, it would not have the original data.

36. The instruction could lie astride a page boundary, causing two page faults just
to fetch the instruction. The word fetched could also span a page boundary,
generating two more faults, for a total of four. If words must be aligned in
memory, the data word can cause only one fault, but an instruction to load a
32-bit word at address 4094 on a machine with a 4-KB page is legal on some
machines (including the Pentium).

37. Internal fragmentation occurs when the last allocation unit is not full. Exter-
nal fragmentation occurs when space is wasted between two allocation units.
In a paging system, the wasted space in the last page is lost to internal frag-
mentation. In a pure segmentation system, some space is invariably lost
between the segments. This is due to external fragmentation.

38. No. The search key uses both the segment number and the virtual page
number, so the exact page can be found in a single match.

PROBLEM SOLUTIONS FOR CHAPTER 5 19

SOLUTIONS TO CHAPTER 5 PROBLEMS

1. In the figure, we see a controller with two devices. The reason that a single
controller is expected to handle multiple devices is to eliminate the need for
having a controller per device. If controllers become almost free, then it will
be simpler just to build the controller into the device itself. This design will
also allow multiple transfers in parallel and thus give better performance.

2. Easy. The scanner puts out 400 KB/sec maximum. The bus and disk both run
at 16.7 MB/sec, so neither the disk nor the bus comes anywhere near satura-
tion.

3. It is not a good idea. The memory bus is surely faster than the I/O bus, other-
wise why bother with it? Consider what happens with a normal memory
request. The memory bus finishes first, but the I/O bus is still busy. If the
CPU waits until the I/O bus finishes, it has reduced memory performance to
that of the I/O bus. If it just tries the memory bus for the second reference, it
will fail if this one is an I/O device reference. If there were some way to
instantaneously abort the previous I/O bus reference to try the second one, the
improvement might work, but there is never such an option. All in all, it is a
bad idea.

4. Each bus transaction has a request and a response, each taking 100 nsec, or
200 nsec per bus transaction. This gives 5 million bus transactions/sec. If
each one is good for 4 bytes, the bus has to handle 20 MB/sec. The fact that
these transactions may be sprayed over four I/O devices in round-robin
fashion is irrelevant. A bus transaction takes 200 nsec, regardless of whether
consecutive requests are to the same device or different devices, so the
number of channels the DMA controller has does not matter. The bus does
not know or care.

5. An interrupt requires pushing 34 words onto the stack. Returning from the
interrupt requires fetching 34 words from the stack. This overhead alone is
680 nsec. Thus the maximum number of interrupts per second is no more
than about 1.47 million, assuming no work for each interrupt.

6. It could have been done at the start. A reason for doing it at the end is that
the code of the interrupt service procedure is very short. By first outputting
another character and then acknowledging the interrupt, if another interrupt
happens immediately, the printer will be working during the interrupt, making
it print slightly faster. A disadvantage of this approach is slightly longer dead
time when other interrupts may be disabled.

7. Yes. The stacked PC points to the first instruction not fetched. All instruc-
tions before that have been executed and the instruction pointed to and its
successors have not been executed. This is the condition for precise

20 PROBLEM SOLUTIONS FOR CHAPTER 5

interrupts. Precise interrupts are not hard to achieve on machine with a single
pipeline. The trouble comes in when instructions are executed out of order,
which is not the case here.

8. The printer prints 50 × 80 × 6 = 24,000 characters/min, which is 400
characters/sec. Each character uses 50 µsec of CPU time for the interrupt, so
collectively in each second the interrupt overhead is 20 msec. Using
interrupt-driven I/O, the remaining 980 msec of time is available for other
work. In other words, the interrupt overhead costs only 2% of the CPU,
which will hardly affect the running program at all.

9. Device independence means that files and devices are accessed the same way,
independent of their physical nature. Systems that have one set of calls for
writing on a file, but a different set of calls for writing on the console (termi-
nal) do not exhibit device independence.

10. (a) Device driver.
(b) Device driver.
(c) Device-independent software.
(d) User-level software.

11. Based on the data in Fig. 5-17, for the floppy disk example, there are
9 × 512 × 8 = 36864 bits per track. At 200 msec per rotation the bit rate is
184,320 bits/sec. The hard disk has an average of 281 sectors per track, so
there are 281 × 512 × 8 = 1,150,976 bits/track on the average. A rotation
time of 8.33 msec corresponds to 120 rotation/sec (7200 rpm), so in one
second the disk can transfer 120 × 1,150,976 bits. This is about 138 million
bits/sec. The data rate of the floppy disk is roughly three times that of a 56-
Kbps modem. The data rate of the hard disk is about 38% faster than Fast
Ethernet. However, these calculations underestimate the actual maximum
data rates, because for every 512 bytes of data on a disk there are also a
number of bytes of formatting information, to identify the track and sector, as
well as a gap between sectors, necessary to prevent sectors from overlapping
if there are slight speed variations.

12. A packet must be copied four times during this process, which takes 4.1
msec. There are also two interrupts, which account for 2 msec. Finally, the
transmission time is 0.83 msec, for a total of 6.93 msec per 1024 bytes. The
maximum data rate is thus 147,763 bytes/sec, or about 12 percent of the nom-
inal 10 megabit/sec network capacity. (If we include protocol overhead, the
figures get even worse.)

13. If the printer were assigned as soon as the output appeared, a process could
tie up the printer by printing a few characters and then going to sleep for a
week.

PROBLEM SOLUTIONS FOR CHAPTER 5 21

14. The disk rotates at 120 rpm, so 1 rotation takes 1000/120 msec. With 200
sectors per rotation, the sector time is 1/200 of this number or 5/120 = 1/24
msec. During the 1-msec seek, 24 sectors pass under the head. Thus the
cylinder skew should be 24.

15. As we saw in the previous problem, the sector time is 1/24 msec. This means
that the disk can read 24,000 sectors/sec. Since each sector contains 512
bytes, the data rate is 12,288,000 bytes/sec. This rate is 11.7 MB/sec.

16. RAID level 2 can not only recover from crashed drives, but also from
undetected transient errors. If one drive delivers a single bad bit, RAID level
2 will correct this, but RAID level 3 will not.

17. The probability of 0 failures, P 0, is (1 − p)k . The probability of 1 failure, P 1,
is kp(1 − p)k −1. The probability of a RAID failure is then 1 − P 0 − P 1. This
is 1 − (1 − p)k − kp(1 − p)k −1.

18. A magnetic field is generated between two poles. Not only is it difficult to
make the source of a magnetic field small, but also the field spreads rapidly,
which leads to mechanical problems trying to keep the surface of a magnetic
medium close to a magnetic source or sensor. A semiconductor laser gen-
erates light in a very small place, and the light can be optically manipulated to
illuminate a very small spot at a relatively great distance from the source.

19. Possibly. If most files are stored in logically consecutive sectors, it might be
worthwhile interleaving the sectors to give programs time to process the data
just received, so that when the next request is issued, the disk would be in the
right place. Whether this is worth the trouble depends strongly on the kind of
programs run and how uniform their behavior is.

20. The rotation time is 200 msec. Reading all the sectors in order requires 1/2
rotation to get sector 0 and 2.75 rotations to get the data (after sector 7 is read,
the transfer is finished). Thus 3.25 rotations are needed for 650 msec. Read-
ing 4K in 650 msec is 6302 bytes/sec. For a noninterleaved disk, it takes 300
msec to read 4K, which is 13,653 bytes/sec. Interleaving reduces the capacity
to 6302/13653 or 0.46 of its former capacity.

21. Maybe yes and maybe no. Double interleaving is effectively a cylinder skew
of two sectors. If the head can make a track-to-track seek in fewer than two
sector times, than no additional cylinder skew is needed. If it cannot, then
additional cylinder skew is needed to avoid missing a sector after a seek.

22. The drive capacity and transfer rates are doubled. The seek time and average
rotational delay are the same.

22 PROBLEM SOLUTIONS FOR CHAPTER 5

23. One fairly obvious consequence is that no existing operating system will
work because they all look there to see where the disk partitions are. Chang-
ing the format of the partition table will cause all the operating systems to
fail. The only way to change the partition table is to simultaneously change
all the operating systems to use the new format.

24. (a) 10 + 12 + 2 + 18 + 38 + 34 + 32 = 146 cylinders= 876 msec.
(b) 0 + 2 + 12 + 4 + 4 + 36 +2 = 60 cylinders = 360 msec.
(c) 0 + 2 + 16 + 2 + 30 + 4 + 4 = 58 cylinders = 348 msec.

25. Not necessarily. A UNIX program that reads 10,000 blocks issues the
requests one at a time, blocking after each one is issued until after it is com-
pleted. Thus the disk driver sees only one request at a time; it has no oppor-
tunity to do anything but process them in the order of arrival. Harry should
have started up many processes at the same time to see if the elevator algo-
rithm worked.

26. There is a race but it does not matter. Since the stable write itself has already
completed, the fact that the nonvolatile RAM has not been updated just
means that the recovery program will know which block was being written.
It will read both copies. Finding them identical, it will change neither, which
is the correct action. The effect of the crash just before the nonvolatile RAM
was updated just means the recovery program will have to make two disk
reads more than it should.

27. Two msec 60 times a second is 120 msec/sec, or 12 percent of the CPU

28. The number of seconds in a mean year is 365.25 × 24 × 3600. This number is
31,557,600. The counter wraps around after 232 seconds from 1 January
1970. The value of 232/31,557,600 is 136.1 years, so wrapping will happen at
2106.1, which is early February 2106. Of course, by then, all computers will
be at least 64 bits, so it will not happen at all.

29. Each line requires 3200 × 8 = 25,600 samples/sec. At 1 µsec per sample,
each line takes up 25.6 msec of the processor’s time each second. With 39
lines, the processor is busy for 39 × 25.6 = 998.4 msec each second, which
gives the capacity of the card as 39 lines.

30. After a character is written to an RS232 terminal, it takes a (relatively) long
time before it is printed. Waiting would be wasteful, so interrupts are used.
With memory-mapped terminals, the character is accepted instantly, so inter-
rupts make no sense.

31. At 56 Kbps, we have 5600 interrupts/sec, which is 560 msec. This is 56% of
the CPU.

PROBLEM SOLUTIONS FOR CHAPTER 5 23

32. Scrolling the window requires copying 59 lines of 80 characters or 4720 char-
acters. Copying 1 character (16 bytes) takes 800 nsec, so the whole window
takes 3.776 msec. Writing 80 characters to the screen takes 400 nsec, so
scrolling and displaying a new line take 4.176 msec. This gives about 239.5
lines/sec.

33. Suppose that the user inadvertently asked the editor to print thousands of
lines. Then he hits DEL to stop it. If the driver did not discard output, output
might continue for several seconds after the DEL, which would make the user
hit DEL again and again and get frustrated when nothing happened.

34. It should move the cursor to line 5 position 7 and then delete 6 characters.
The sequence is ESC [5 ; 7 H ESC [6 P

35. The embedded processor inside the terminal has to move all the characters up
one line by just copying them. Viewed from the inside, the terminal is
memory mapped. There is no easy way to avoid this organization unless spe-
cial hardware is available.

36. The 25 lines of characters, each 8 pixels high, requires 200 scans to draw.
There are 60 screens a second, or 12,000 scans/sec. At 63.6 µsec/scan, the
beam is moving horizontally 763 msec per second, leaving 237 msec for writ-
ing in the video RAM. Thus the video RAM is available 23.7% of the time.

37. The maximum rate the mouse can move is 200 mm/sec, which is 2000
mickeys/sec. If each report is 3 byte, the output rate is 6000 bytes/sec.

38. With a 24-bit color system, only 224 colors can be represented. This is not all
of them. For example, suppose that a photographer takes pictures of 300 cans
of pure blue paint, each with a slightly different amount of pigment. The first
can might be represented by the (R, G, B) value (0, 0, 1). The next one might
be represented by (0, 0, 2), etc. Since the B coordinate is only 8 bits, there is
no way to represent 300 different values of pure blue. Some of the photo-
graphs will have to be rendered as the wrong color. Another example is the
color (120.24, 150.47, 135.89). It cannot be represented, only approximated
by (120, 150, 136).

39. (a) Each pixel takes 3 bytes in RGB, so the table space is 16 × 24 × 3 bytes,
which is 1152 bytes.
(b) At 100 nsec per byte, each character takes 115.2 µsec. This gives an out-
put rate of about 8681 chars/sec.

40. Rewriting the text screen requires copying 2000 bytes, which can be done in
20 µseconds. Rewriting the graphics screen requires copying 1024 × 768 × 3
= 2,359,296 bytes, or about 23.6 msec.

24 PROBLEM SOLUTIONS FOR CHAPTER 5

41. In Windows, the OS calls the handler procedures itself. In X Windows, noth-
ing like this happens. X just gets a message and processes it internally.

42. The first parameter is essential. First of all, the coordinates are relative to
some window, so hdc is needed to specify the window and thus the origin.
Second, the rectangle will be clipped if it falls outside the window, so the
window coordinates are needed. Third, the color and other properties of the
rectangle are taken from the context specified by hdc. It is quite essential.

43. The display size is 400 × 160 × 3 bytes, which is 192,000 bytes. At 10 fps
this is 1,920,000 bytes/sec or 15,360,000 bits/sec. This consumes 15% of the
Fast Ethernet.

44. The bandwidth on a network segment is shared, so 100 users requesting dif-
ferent data simultaneously on a 1-Mbps network will each see a 10-Kbps
effective speed. With a shared network, a TV program can be multicast, so
the video packets are only broadcast once, no matter how many users there
are and it should work well. With 100 users browsing the Web, each user
will get 1/100 of the bandwidth, so performance may degrade very quickly.

45. If n = 10, the CPU can still get its work done on time, but the energy used
drops appreciably. If the energy consumed in 1 sec at full speed is E, then
running at full speed for 100 msec then going idle for 900 msec uses E/10.
Running at 1/10 speed for a whole second uses E/100, a saving of 9E/100.
The percent savings by cutting the voltage is 90%.

46. The windowing system uses much more memory for its display and uses vir-
tual memory more than the text mode. This makes it less likely that the hard
disk will be inactive for a period long enough to cause it to be automatically
powered down.

SOLUTIONS TO CHAPTER 6 PROBLEMS

1. You can go up and down the tree as often as you want using ‘‘..’’. Some of
the many paths are

/etc/passwd
/./etc/passwd
/././etc/passwd
/./././etc/passwd
/etc/../etc/passwd
/etc/../etc/../etc/passwd
/etc/../etc/../etc/../etc/passwd
/etc/../etc/../etc/../etc/../etc/passwd

PROBLEM SOLUTIONS FOR CHAPTER 6 25

2. The Windows way is to use the file extension. Each extension corresponds to
a file type and to some program that handles that type. Another way is to
remember which program created the file and run that program. The Macin-
tosh works this way.

3. These systems loaded the program directly in memory and began executing at
word 0, which was the magic number. To avoid trying to execute the header
as code, the magic number was a BRANCH instruction with a target address
just above the header. In this way it was possible to read the binary file
directly into the new process’ address space and run it at 0, without even
knowing how big the header was.

4. The operating system cares about record length when files can be structured
as records with keys at a specific position within each record and it is possible
to ask for a record with a given key. In that case, the system has to know how
big the records are so it can search each one for the key.

5. To start with, if there were no open, on every read it would be necessary to
specify the name of the file to be opened. The system would then have to
fetch the i-node for it, although that could be cached. One issue that quickly
arises is when to flush the i-node back to disk. It could time out, however. It
would be a bit clumsy, but it might work.

6. No. If you want to read the file again, just randomly access byte 0.

7. Yes. The rename call does not change the creation time or the time of last
modification, but creating a new file causes it to get the current time as both
the creation time and the time of last modification. Also, if the disk is full,
the copy might fail.

8. The mapped portion of the file must start at a page boundary and be an
integral number of pages in length. Each mapped page uses the file itself as
backing store. Unmapped memory uses a scratch file or partition as backing
store.

9. Use file names such as /usr/ast/file. While it looks like a hierarchical path
name, it is really just a single name containing embedded slashes.

10. One way is to add an extra parameter to the read system call that tells what
address to read from. In effect, every read then has a potential for doing a
seek within the file. The disadvantages of this scheme are (1) an extra param-
eter in every read call, and (2) requiring the user to keep track of where the
file pointer is.

11. The dotdot component moves the search to /usr, so ../ast puts it in /usr/ast.
Thus ../ast/x is the same as /usr/ast/x.

26 PROBLEM SOLUTIONS FOR CHAPTER 6

12. Since the wasted storage is between the allocation units (files), not inside
them, this is external fragmentation. It is precisely analogous to the external
fragmentation of main memory that occurs with a swapping system or a sys-
tem using pure segmentation.

13. It takes 9 msec to start the transfer. To read 213 bytes at a transfer rate of 223

bytes/sec requires 2−10 sec (977 msec), for a total of 9.977 msec. Writing it
back takes another 9.977 msec. Thus copying a file takes 19.954 msec. To
compact half of a 16-GB disk would involve copying 8 GB of storage, which
is 220 files. At 19.954 msec per file, this takes 20,923 sec, which is 5.8 hours.
Clearly, compacting the disk after every file removal is not a great idea.

14. If done right, yes. While compacting, each file should be organized so that all
of its blocks are consecutive, for fast access. Windows has a program that
defragments and reorganizes the disk. Users are encouraged to run it periodi-
cally to improve system performance. But given how long it takes, running
once a month might be a good frequency.

15. A digital still camera records some number of photographs in sequence on a
nonvolatile storage medium (e.g., flash memory). When the camera is reset,
the medium is emptied. Thereafter, pictures are recorded one at a time in
sequence until the medium is full, at which time they are uploaded to a hard
disk. For this application, a contiguous file system inside the camera (e.g., on
the picture storage medium) is ideal.

16. It finds the address of the first block in the directory entry. It then follows the
chain of block pointers in the FAT until it has located the block it needs. It
then remembers this block number for the next read system call.

17. The indirect block can hold 256 disk addresses. Together with the 10 direct
disk addresses, the maximum file has 266 blocks. Since each block is 1 KB,
the largest file is 266 KB.

18. There must be a way to signal that the address block pointers hold data, rather
than pointers. If there is a bit left over somewhere among the attributes, it
can be used. This leaves all nine pointers for data. If the pointers are k bytes
each, the stored file could be up to 9k bytes long. If no bit is left over among
the attributes, the first disk address can hold an invalid address to mark the
following bytes as data rather than pointers. In that case, the maximum file is
8k bytes.

19. Elinor is right. Having two copies of the i-node in the table at the same time
is a disaster, unless both are read only. The worst case is when both are being
updated simultaneously. When the i-nodes are written back to the disk,
whichever one gets written last will erase the changes made by the other one,
and disk blocks will be lost.

PROBLEM SOLUTIONS FOR CHAPTER 6 27

20. Hard links do not require any extra disk space, just a counter in the i-node to
keep track of how many there are. Symbolic links need space to store the
name of the file pointed to. Symbolic links can point to files on other
machines, even over the Internet. Hard links are restricted to pointing to files
within their own partition.

21. The bitmap requires B bits. The free list requires DF bits. The free list
requires fewer bits if DF < B. Alternatively, the free list is shorter if
F/B < 1 /D, where F/B is the fraction of blocks free. For 16-bit disk
addresses, the free list is shorter if 6 percent or less of the disk is free.

22. The beginning of the bitmap looks like:

(a) After writing file B: 1111 1111 1111 0000
(b) After deleting file A: 1000 0001 1111 0000
(c) After writing file C: 1111 1111 1111 1100
(d) After deleting file B: 1111 1110 0000 1100

23. It is not a serious problem at all. Repair is straightforward; it just takes time.
The recovery algorithm is to make a list of all the blocks in all the files and
take the complement as the new free list. In UNIX this can be done by scan-
ning all the i-nodes. In the FAT file system, the problem cannot occur
because there is no free list. But even if there were, all that would have to be
done to recover it is to scan the FAT looking for free entries.

24. Ollie’s thesis may not be backed up as reliably as he might wish. A backup
program may pass over a file that is currently open for writing, as the state of
the data in such a file may be indeterminate.

25. They must keep track of the time of the last dump in a file on disk. At every
dump, an entry is appended to this file. At dump time, the file is read and the
time of the last entry noted. Any file changed since that time is dumped.

26. In (a) and (b), 21 would not be marked. In (c), there would be no change. In
(d), 21 would not be marked.

27. Many UNIX files are short. If the entire file fits in the same block as the i-
node, only one disk access would be needed to read the file, instead of two, as
is presently the case. Even for longer files there would be a gain, since one
fewer disk accesses would be needed.

28. It should not happen, but due to a bug somewhere it could happen. It means
that some block occurs in two files and also twice in the free list. The first
step in repairing the error is to remove both copies from the free list. Next a
free block has to be acquired and the contents of the sick block copied there.
Finally, the occurrence of the block in one of the files should be changed to
refer to the newly acquired copy of the block. At this point the system is once
again consistent.

28 PROBLEM SOLUTIONS FOR CHAPTER 6

29. The time needed is h + 40 × (1 − h). The plot is just a straight line.

30. The time per block is built up of three components: seek time, rotational
latency, and transfer time. In all cases the rotational latency plus transfer
time is the same, 125 msec. Only the seek time differs. For 13 cylinders it is
78 msec; for 2 cylinders it is 12 msec. Thus for randomly placed files the
total is 203 msec, and for clustered files it is 137 msec.

31. At 15,000 rpm, the disk takes 4 msec to go around once. The average access
time (in msec) to read k bytes is then 8 + 2 + (k /262144) × 4. For blocks of 1
KB, 2 KB, and 4 KB, the access times are 10.015625 msec, 10.03125 msec,
and 10.0625 msec, respectively (hardly any different). These give rates of
about 102,240 KB/sec, 204,162 KB/sec, and 407,056 KB/sec, respectively.

32. If all files were 1 KB, then each 2-KB block would contain one file and 1 KB
of wasted space. Trying to put two files in a block is not allowed because the
unit used to keep track of data is the block, not the semiblock. This leads to
50 percent wasted space. In practice, every file system has large files as well
as many small ones, and these files use the disk much more efficiently. For
example, a 32,769-byte file would use 17 disk blocks for storage, given a
space efficiency of 32768/34816, which is about 94 percent.

33. The directory format allows for up to 255 blocks on the disk (due to the 8-bit
number in the directory entry). This is clearly not enough so the first change
has to be to go to more disk blocks. Instead of 16 8-bit addresses, we should
use 8 16-bit addresses. This allows 65,536 disk blocks per disk. If we make
blocks 32,768 bytes, the same size MS-DOS uses on large disks, the maximum
disk size (actually, the maximum partition size) is now 2 GB. However, indi-
vidual files are limited to eight disk blocks per extent and 255 extents for a
maximum of 2040 blocks or 63.75 MB. A design with a maximum disk of 2
GB and a maximum file of 63.75 MB is plausible. If this is not enough, one
could use one of the unused bytes in the directory entry to raise the extent
field to 16 bits. This raises the number of blocks per file to 524,280 and the
file size to almost 16 GB. Larger blocks sizes go even further.

34. The largest block is 32,768. With 32,768 of these blocks, the biggest file
would be 1 GB.

35. It constrains the sum of all the file lengths to being no larger than the disk.
This is not a very serious constraint. If the files were collectively larger than
the disk, there would be no place to store all of them on the disk.

36. The i-node holds 10 pointers. The single indirect block holds 256 pointers.
The double indirect block is good for 2562 pointers. The triple indirect block
is good for 2563 pointers. Adding these up, we get a maximum file size of
16,843,018 blocks, which is about 16.06 GB.

PROBLEM SOLUTIONS FOR CHAPTER 6 29

37. The following disk reads are needed:

directory for /
i-node for /usr
directory for /usr
i-node for /usr/ast
directory for /usr/ast
i-node for /usr/ast/courses
directory for /usr/ast/courses
i-node for /usr/ast/courses/os
directory for /usr/ast/courses/os
i-node for /usr/ast/courses/os/handout.t

In total, 10 disk reads are required.

38. Some pros are as follows. First, no disk space is wasted on unused i-nodes.
Second, it is not possible to run out of i-nodes. Third, less disk movement is
needed since the i-node and the initial data can be read in one operation.
Some cons are as follows. First, directory entries will now need a 32-bit disk
address instead of a 16-bit i-node number. Second, an entire disk will be used
even for files which contain no data (empty files, device files). Third, file sys-
tem integrity checks will be slower because of the need to read an entire
block for each i-node and because i-nodes will be scattered all over the disk.
Fourth, files whose size has been carefully designed to fit the block size will
no longer fit the block size due to the i-node, messing up performance.

SOLUTIONS TO CHAPTER 7 PROBLEMS

1. XGA is 1024 × 768. With 24 bits/pixel and 25 frames/sec we get
471,859,200 bits/sec. This rate is too high for UltraWide SCSI, which can
only go up to 320 Mbps.

2. Standard NTSC television is about 640 × 480 pixels. At 8 bits/pixel and 30
frames/sec we get a bandwidth of 73 Mbps. It just barely makes it with one
channel. Two channels would be too much.

3. From the table, HDTV is 1280 × 720 versus 640 × 480 for regular TV. It has
three times as many pixels and thus needs three times the bandwidth. The
reason it does not need four times as much bandwidth is that the aspect ratio
of HDTV is different from conventional TV to match that of 35-mm film
better.

4. For slow motion going forward, it is sufficient for each frame to be displayed
two or more times in a row. No additional file is needed. To go backward
slowly is as bad as going backward quickly, so an additional file is needed.

30 PROBLEM SOLUTIONS FOR CHAPTER 7

5. Audio is sampled at 16 bits per sample, 44,100 times/sec with two channels.
This gives an uncompressed audio rate of 1,411,200 bits/sec or 176,400
bytes/sec. In 74 minutes, this adds up to 747 MB. This is the full capacity of
the CD. It is not compressed at all. The reason data is limited to 650 MB is
that better error correction is used for data since an error is more serious than
for music. If even a factor of two compression had been used on audio CDs,
the data would have been less than 374 MB and more than 74 minutes could
be stored on a CD.

6. There are 32,768 possible magnitudes. For example, suppose the signal
ranges from −32.768 volts to +32,767 volts and the value stored for each sam-
ple is the signal rounded off to the nearest number of millivolts, as a signed
16-bit integer. A signal of 16.0005 volts would have to be recorded as either
16,000 or as 16,001. The percent error here is 1/320 percent. However, sup-
pose the signal is 0.0005 volts. This is recorded at either 0 or 1. In the latter
case, the error is 50%. Thus quantization noise affects low amplitudes more
than high amplitudes. Flute concertos will be hit harder than rock and roll
due to their lower amplitudes.

7. A volume compression/expansion scheme could be implemented as follows.
One bit of the output is reserved to signal that the recorded signal is
expanded. The remaining 15 bits are used for the signal. When the high-order
5 bits of the 20-bit signal are not 00000, the expansion bit is 0 and the other
15 bits contain the high-order 15 bits of the sampled data. When the high-
order 5 bits of the signal are 00000, the expansion bit is turned on and the
20-bit amplitude signal is shifted left 5 bits. At the listener’s end the reverse
process takes place. This scheme increases quantization noise slightly for
loud signals (due to a 15-bit signal instead of a 16-bit signal), but decreases it
for quiet signals, when the effect of quantization is most noticeable. A major
disadvantage is that this is not a standard and would not work with existing
CD players, but it could work for online music played with a special plugin
that used this scheme on both ends. A more sophisticated version could use 2
bits to denote four different expansion regimes for different signal levels.

8. PAL has more scan lines and more spatial resolution than NTSC. It has 625
vertical lines versus 525 for NTSC. It also has more pixels per line. These
result in a sharper image, and use the extra bandwidth. On the other hand,
NTSC has more frames per second, so it is better for catching rapid action.
Neither one is ‘‘better’’ than the other in this sense. Different trade-offs have
been made: better resolution in time versus better resolution in space. All of
this is completely independent of the color encoding schemes used.

9. The difference does not cause problems at all. The DCT algorithm is used to
encode I-frames in a JPEG-like scheme. The macroblocks are used in P-

PROBLEM SOLUTIONS FOR CHAPTER 7 31

frames to locate macroblocks that appeared in previous frames. The two
things have nothing to do with each other and do not conflict.

10. No they do not. The motion compensation algorithm will find each macrob-
lock in the previous frame at some offset from its current location. By encod-
ing the fact that the current macroblock should be taken from the previous
frame at a position (∆x, ∆y) from the current one, it is not necessary to
transmit the block itself again.

11. The processes supporting the three video streams already use 0.808 of the
CPU time, so there are 192 msec per second left over for audio. Audio proc-
ess A runs 33.333 times/sec, audio process B runs 25 times/sec, and audio
process C runs 20 times/sec, for a total of 78.333 runs/sec. These 78.333 runs
may use 192 msec, so each run can use 192/78.333 or 2.45 msec.

12. The first process uses 0.400 of the CPU. The second one uses 0.375 of the
CPU. Together they use 0.775. The RMS limit for two processes is
2 × (20.5 − 1), which is 0.828, so RMS is guaranteed to work.

13. Since 0.65 < ln 2, RMS can always schedule the movies, no matter how many
there are. Thus RMS does not limit the number of movies.

14. The sequence starting at t = 150 is A 6, B 5, C 4, A 7, B 6, A 5, and C 5. When
C 5 ends at t = 235 there is no work to do until t = 240 when A and B become
ready, so the system goes idle for 5 msec. The choice of running B 5 before
C 4 is arbitrary. The other way is also allowed.

15. A DVD reader is OK for home viewing, but the high seek time of current opt-
ical recording systems limits their usefulness to providing a single stream of
data. DVD drives cannot support multiple streams with different start times
or VCR-like control functions such as pause, rewind, and fast forward for dif-
ferent users. With current technology the data would have to buffered in an
extremely large memory. Hard disks are simply better.

16. If the worst-case wait is 6 min, a new stream must start every 6 min. For a
180-min movie, 30 streams are needed.

17. The data rate is 0.5 MB/sec. One minute of video uses 30 MB. To go for-
ward or backward 1 min each requires 60 MB.

18. HDTV does not make any difference. There are still 216,000 frames in the
movie. The wastage for each frame is about half a disk block, or 0.5 KB. For
the whole movie, this loss is 108 KB.

19. There is some loss for each frame. The more frames you have, the more loss
you have. NTSC has a higher frame rate, so it has slightly more loss. But
given the numbers involved, this loss is not a significant fraction of the total
disk space.

32 PROBLEM SOLUTIONS FOR CHAPTER 7

20. The main effect of HDTV is larger frames. Large frames tend to make the
disadvantage of small blocks less serious because large frames can be read in
efficiently. Thus the disk performance argument in favor of large blocks
diminishes. In addition, if frames are not split over blocks (as they are not
here), having I-frames that are a substantial fraction of a block is a serious
problem. It may often occur that a block is partly full and a large I-frame
appears next, wasting a large amount of space in the current block. On the
whole, going to HDTV favors the small block model.

21. The buffer is big enough if the number of I-frames is 4 or less. The probabil-
ity of getting exactly k I-frames is C (24,k)I kB 24−k , where I is 0.1 and B is
0.9. The probabilities of getting exactly 0, 1, 2, 3, and 4 I-frames are 0.0798.
0.213, 0.272, 0.221, and 0.129, respectively. The sum of these is 0.915. This
means there is a 0.085 or 8.5% chance of failure. This is far too large to
accept.

22. To get the play point in the middle of the buffer, we need to be able to read
and store three streams at once. When the movie resumes at 12 min, we start
storing the streams that are currently at 15 min and 20 min. After 3 minutes,
we have stored 15–18 min and 20–23 min. At that point we drop the private
stream and start displaying from the buffer. After an additional 2 min, we
have 15–25 min stored and the play point is 17 min. At this point we only
load the buffer from the stream now at 25 min. In 3 min, we have 15–28 min
in the buffer and the play point is 20 min. We have achieved our goal.
Because we are out of sync with the near video-on-demand streams, this is
the best we can do.

23. One alternative is to have a separate file for each language. This alternative
minimizes RAM use but wastes large amounts of disk space. If disk space is
cheap and the goal is to support as many possible streams at once, this
approach is attractive. Another alternative is to store the audio track for each
language separately and do an extra seek per frame to fetch the audio. This
scheme makes efficient use of disk space, but introduces extra seeks and thus
slows down performance.

24. The normalization constant, C, is 0.36794, so the probabilities are 0.368,
0.184, 0.123, 0.092, 0.074, 0.061, 0.053, and 0.046.

25. A 14-GB disk holds 14 × 230 or 15,032,385,536 bytes. If these are uniformly
split over 1000 cylinders, each cylinder holds 15,032,385, which is just
enough for a 30-sec video clip. Thus each clip occupies one cylinder. The
question is then what fraction of the total weight is represented by the top 10
clips out of 1000. Adding up 1, 1/2, ... 1/10, we get 2.92895. Multiplying
this by 0.134 we get 0.392, so the arm spends nearly 40% of its time within
the middle 10 cylinders.

PROBLEM SOLUTIONS FOR CHAPTER 7 33

26. For four items, Zipf’s law yields probabilities of 0.48, 0.24, 0.16, and 0.12.
Ratios of these probabilities also describe the relative utilization of the drives
for Fig. 7-0(a). For the other three striping arrangements all drives will be
used equally, assuming that everybody who pays for a movie watches it
through to the end. The result at a particular time might be different, however.
If everybody in the town wants to start watching a movie at 8 A.M. the
arrangement of Fig. 7-0(b) would initially hit the first disk hardest, then the
next disk 15 minutes later, etc. The arrangements of Fig. 7-0(c) or (d) would
not be affected this way.

27. PAL runs at 25 frames/sec, so the two users are off by 150 frames. To merge
them in 3 min means closing the gap by 50 frames/min. One goes 25
frames/min faster and one goes 25 frames/min slower. The normal frame rate
is 1500 frames/min, so the speed up or down is 25/1500 or 1/60, which is
about 1.67%.

28. For NTSC, with 30 frames/sec, a round is 33.3 msec. The disk rotates 180
times/sec, so the average rotational latency is half a rotation or 2.8 msec.
MPEG-2 runs at about 500,000 bytes/sec or about 16,667 bytes/frame. At
320 MB/sec, the transfer time for a frame is about 51 µsec. Thus the seek,
rotational latency, and transfer times add up to about 5.8 msec. Five streams
thus eat up 29 msec of the 33.3 msec, which is the maximum.

29. The average seek time goes from 3.0 msec to 2.4 msec, so the time per opera-
tion is reduced to 5.2 msec. This adds one more stream, making six in all.

30. Six streams. Striping is useless. Each disk operation still takes 5.2 msec to
get the arm over the data. Whether the transfer time is 51 µsec or 13 µsec
does not make much difference.

31. For the first batch of five requests, the critical one is for cylinder 676, fourth
in the list, but with a deadline of t = 712 msec. So each request must be
served in 3 msec or less in order for the fourth one to be done at t = 712 msec.

SOLUTIONS TO CHAPTER 8 PROBLEMS

1. Both USENET and SETI@home could be described as wide-area distributed
systems. however, USENET is actually more primitive than the scheme of
Fig. 8-1c, since it does not require any network infrastructure other than
point-to-point connections between pairs of machines. Also, since it does no
processing work beyond that necessary to ensure proper dissemination of
news articles, it could be debated whether it is really a distributed system of
the sort we are concerned with in this chapter. SETI@home is a more typical
example of a wide-area distributed system; data is distributed to remote nodes
which then return results of calculations to the coordinating node.

34 PROBLEM SOLUTIONS FOR CHAPTER 8

2. Depending on the details of how CPUs are connected to memory, one of them
gets through first, e.g., seizes the bus first. It completes its memory operation,
then the other one happens. It is not predictable which one goes first, but if
the system has been designed for sequential consistency, it should not matter.

3. A 200-MIPS machine will issue 200 million memory references/sec, consum-
ing 200 million bus cycles or half of the bus’ capacity. It takes only two
CPUs to consume the entire bus. Caching drops the number of memory
requests/sec to 20 million, allowing 20 CPUs to share the bus. To get 32
CPUs on the bus, each one could request no more than 12,500,000
requests/sec. If only 12.5 million of the 200 million of the memory refer-
ences go out on the bus, the cache miss rate must be 12.5/200 or 6.25%. This
means the hit rate is 93.75%.

4. CPUs 000, 010, 100, and 110 are cut off from memories 010 and 011.

5. Each CPU manages its own signals completely. If a signal is generated from
the keyboard and the keyboard is not assigned to any particular CPU (the
usual case), somehow the signal has to be given to the correct CPU to handle.

6. To issue a system call, a process generates a trap. The trap interrupts its own
CPU. Somehow, the information that a slave CPU has had a trap has to be
conveyed to the master CPU. This does not happen in the first model. If
there are interprocessor trap instructions, this can be used to signal the master.
If no such instructions exist, the slave can collect the parameters of the sys-
tem call and put them in a data structure in memory that the master polls con-
tinuously when it is idle.

7. Here is a possible solution:

enter3region:
TST LOCK | Test the value of lock
JNE ENTER3REGION | If it is nonzero, go try again
TSL REGISTER,LOCK | Copy lock to register and set lock to 1
CMP REGISTER,#0 | Was lock zero?
JNE ENTER3REGION | If it was non zero, lock was set, so loop
RET | Return to caller; critical region entered

8. Probably locks on data structures are enough. It is hard to imagine anything a
piece of code could do that is critical and does not involve some kernel data
structure. All resource acquisition and release uses data structures for exam-
ple. While it cannot be proven, it is very likely that locks on data structures
are sufficient.

9. It takes 16 bus cycles to move the block and it goes both ways for each TSL.
Thus every 50 bus cycles, 32 of them are wasted on moving the cache block.
Consequently, 64% of the bus bandwidth is wasted on cache transfers.

PROBLEM SOLUTIONS FOR CHAPTER 8 35

10. Yes it would, but the interpoll time might end up being very long, degrading
performance. But it would be correct, even without a maximum.

11. It is just as good as TSL. It is used by preloading a 1 into the register to be
used. Then that register and the memory word are atomically swapped. After
the instruction, the memory word is locked (i.e., has a value of 1). Its previ-
ous value is now contained in the register. If it was previously locked, the
word has not be changed and the caller must loop. If it was previously
unlocked, it is now locked.

12. The loop consists of a TSL instruction (5 nsec), a bus cycle (10 nsec), and a
JMP back to the TSL instruction (5 nsec). Thus in 20 nsec, 1 bus cycle is
requested occupying 10 nsec. The loop consumes 50% of the bus.

13. A is the process just selected. There may well be others on the same CPU.

14. Affinity scheduling has to do with putting the right thread on the right CPU.
Doing so might well reduce TLB misses since these are kept inside each
CPU. On the other hand, it has no effect on page faults, since if a page is in
memory for one CPU, it is in memory for all CPUs.

15. (a) 2 (b) 4 (c) 8 (d) 5 (e) 3 (f) 4.

16. On a grid, the worse case is nodes at opposite corners trying to communicate.
However, with a torus, opposite corners are only two hops apart. The worst
case is one corner trying to talk to a node in the middle. For odd k, it takes
(k − 1)/2 hops to go from a corner to the middle horizontally and another
(k − 1)/2 hops to go to the middle vertically, for a total of k − 1. For even k,
the middle is a square of four dots in the middle, so the worst case is from a
corner to the most distant dot in that four-dot square. It takes k/2 hops to get
there horizontally and also k/2 vertically, so the diameter is k.

17. The network can be sliced in two by a plane through the middle, giving two
systems, each with a geometry of 8 × 8 × 4. There are 64 links running
between the two halves, for bisection bandwidth of 64 Gbps.

18. If we just consider the network time, we get 1 nsec per bit or 512-nsec delay
per packet. To copy 64 bytes 4 bytes at a time, 320 nsec are needed on each
side, or 640 nsec total. Adding the 512-nsec wire time, we get 1132 nsec
total. If two additional copies are needed, we get 1792 nsec.

19. If we consider only the wire time, a 1-Gbps network delivers 125 MB/sec.
Moving 64 bytes in 1152 nsec is 55.6 MB/sec. Moving 64 bytes in 1792 nsec
is 35.7 MB/sec.

20. On a shared memory machine it suffices to pass the pointer to the message
from the CPU executing the send to the CPU executing the receive, with pos-
sible translations between virtual and physical memory addresses. On a

36 PROBLEM SOLUTIONS FOR CHAPTER 8

multicomputer without shared memory an address in one CPU’s address
space has no meaning to another CPU, so the actual contents of the send
buffer have to be transmitted as packets and then reassembled in the buffer of
the receiving process. To the programmer the processes look identical, but the
time required will be much longer on the multicomputer.

21. The time to move k bytes by programmed I/O is 20k nsec. The time for DMA
is 2000 + 5k nsec. Equating these and solving for k we get the breakeven
point at 133 bytes.

22. Clearly the wrong thing happens if a system call is executed remotely. Try-
ing to read a file on the remote machine will not work if the file is not there.
Also, setting an alarm on the remote machine will not send a signal back to
the calling machine. One way to handle remote system calls is to trap them
and send them back to the originating site for execution.

23. First, on a broadcast network, a broadcast request could be made. Second, a
centralized database of who has which page could be maintained. Third, each
page could have a home base, indicated by the upper k bits of its virtual
address; the home base could keep track of the location of each of its pages.

24. In this split, node 1 has A, E, and G, node 2 has B and F, and node 3 has C, D,
H, and I. The cut between nodes 1 and 2 now contains AB and EB for a
weight of 5. The cut between nodes 2 and 3 now contains CD, CI, FI, and
FH for a weight of 14. The cut between nodes 1 and 3 now contains EH and
GH for a weight of 8. The sum is 27.

25. The table of open files is kept in the kernel, so if a process has open files,
when it is unfrozen and tries to use one of its files, the new kernel does not
know about them. A second problem is the signal mask, which is also stored
on the original kernel. A third problem is that if an alarm is pending, it will
go off on the wrong machine. In general, the kernel is full of bits and pieces
of information about the process, and they have to be successfully migrated as
well.

26. Ethernet nodes must be able to detect collisions between packets, so the pro-
pagation delay between the two most widely separated nodes must be less
than the duration of the shortest packet to be sent. Otherwise the sender may
fully transmit a packet and not detect a collision even though the packet
suffers a collision close to the other end of the cable.

27. The middleware runs on different operating systems so the code is clearly dif-
ferent because the embedded system calls are different. What they have in
common is producing a common interface to the application layer above
them. If the application layer only makes calls to the Middleware layer and

PROBLEM SOLUTIONS FOR CHAPTER 8 37

no system calls, then all the versions of it can have the same source code. If
they also make true system calls, these will differ.

28. The most appropriate services are

(a) Unreliable connection.
(b) Reliable byte stream.

29. It is maintained hierarchically. There is a worldwide server for .edu that
knows about all the universities and a .com server that knows about all the
names ending in .com. Thus to look up cs.uni.edu, a machine would first look
up uni at the .edu server, then go there to ask about cs, and so on.

30. A computer may have many processes waiting for incoming connections.
These could be the Web server, mail server, news server, and others. Some
way is needed to make it possible to direct an incoming connection to some
particular process. That is done by having each process listen to a specific
port. It has been agreed upon that Web servers will listen to port 80, so
incoming connections directed to the Web server are sent to port 80. The
number itself was an arbitrary choice, but some number had to be chosen.

31. They can. For example, www.intel.com says nothing about where the server
is.

32. One way would be for the Web server to package the entire page, including
all the images in a big zip file and send the whole thing the first time so only
one connection is needed. A second way would be to use a connectionless
protocol like UDP. This would eliminate the connection overhead, but would
require servers and browsers to do their own error control.

33. Having the value of a read depend on whether a process happens to be on the
same machine as the last writer is not at all transparent. This argues for mak-
ing changes only visible to the process making the changes. On the other
hand, having a single cache manager per machine is easier and cheaper to
implement. Such a manager becomes a great deal more complicated if it has
to maintain multiple copies of each modified file, with the value returned
depending on who is doing the reading.

34. Some cached file should be sent back to the server. All of the standard pag-
ing algorithms can be used, such as LRU or second chance. In contrast to vir-
tual memory, however, using exact LRU is possible because file references
are infrequent (millisecond time scale, not nanosecond time scale).

35. Shared memory works with whole pages. This can lead to false sharing, in
which access to unrelated variables that happen to lie on the same page cause
thrashing. Putting each variable on a separate page is wasteful. Object-based
access eliminates these problems and allows a finer grain of sharing.

38 PROBLEM SOLUTIONS FOR CHAPTER 8

36. Hashing on any of the fields of the tuple when it is inserted into the tuple
space does not help because the in may have mostly formal parameters. One
optimization that always works is noting that all the fields of both out and in
are typed. Thus the type signature of all tuples in the tuple space is known
and the tuple type needed on an in is also known. This suggests creating a
tuple subspace for each type signature. For example, all the (int, int, int)
tuples go in one space and all the (string, int, float) tuples go into a different
space. When an in is executed, only the matching subspace has to be
searched.

SOLUTIONS TO CHAPTER 9 PROBLEMS

1. The constraint is that no two cells contain the same two letters, otherwise
decryption would be ambiguous. Thus each of the 676 matrix elements con-
tains a different one of the 676 digrams. The number of different combina-
tions is thus 676!. This is a very big number.

2. the time has come the walrus said to talk of many things
of ships and shoes and sealing wax of cabbages and kings
of why the sea is boiling hot and whether pigs have wings
but wait a bit the oysters cried before we have our chat
for some of us are out of breath and all of us are fat
no hurry said the carpenter they thanked him much for that

From Through the looking glass (Tweedledum and Tweedledee).

3. The number of permutations is n!, so this is the size of the key space. One
advantage is that the statistical attack based on properties of natural languages
does not work because an E really does represent an E, etc.

4. The sender picks a random key and sends it to the trusted third party
encrypted with the secret key that they share. The trusted third party then
decrypts the random key and recrypts it with the secret key it shares with the
receiver. This message is then sent to the receiver.

5. A function like y = x k is easy to compute but taking the k-th root of y is far
more difficult.

6. It depends on how long the password is. The alphabet from which passwords
is built has 62 symbols. The total search space is 625 + 626 + 627 + 628,
which is about 2 × 1014. If the password is known to be k characters, the
search space is reduced to only 62k . The ratio of these is thus 2 × 1014 /62k .
For k from 5 to 8, these values are 242,235, 3907, 63, and 1. In other words,
learning that the password is only 5 characters reduces the search space by a

PROBLEM SOLUTIONS FOR CHAPTER 9 39

factor of 242,235 because all the long passwords do not have to be tried. This
is a big win. However, learning that it is eight characters does not help much
because it means that all the short (easy) passwords can be skipped.

7. Try to calm the assistant. The password encryption algorithm is public. Pass-
words are encrypted by the login program as soon as they are typed in, and
the encrypted password is compared to the entry in the password file.

8. No, it does not. The student can easily find out what the random number for
his superuser is. This information is in the password file unencrypted. If it is
0003, for example, then he just tries encrypting potential passwords as
Susan0003, Boston0003, IBMPC0003, etc. If another user has password Bos-
ton0004, he will not discover it, however.

9. There are many criteria. Here are a few of them:

It should be easy and painless to measure (not blood samples)
There should be many values available (not eye color)
The characteristic should not change over time (not hair color)
It should be difficult to forge the characteristic (not weight)

10. No, it is not feasible. The problem is that array bounds are not checked.
Arrays do not line up with page boundaries, so the MMU is not of any help.
Furthermore, making a kernel call to change the MMU on every procedure
call would be prohibitively expensive.

11. If all the machines can be trusted, it works ok. If some cannot be trusted, the
scheme breaks down, because an untrustworthy machine could send a mes-
sage to a trustworthy machine asking it to carry out some command on behalf
of the superuser. The machine receiving the message has no way of telling if
the command really did originate with the superuser, or with a student.

12. Both of them make use of one-way encryption functions. UNIX stores all
passwords in the password file encrypted and Lamport’s scheme uses one-
way functions to generate a sequence of passwords.

13. It would not work to use them forward. If an intruder captured one, he would
know which one to use next time. Using them backward prevents this danger.

14. One way to sign a document would be for the smart card to read in the docu-
ment, make a hash of it, and then encrypt the hash with the user’s private key,
stored in the card. The encrypted hash would be output to the Internet cafe
computer, but the secret key would never leave the smart card, so the scheme
is secure.

15. If the capabilities are used to make it possible to have small protection
domains, no; otherwise yes. If an editor, for example, is started up with only

40 PROBLEM SOLUTIONS FOR CHAPTER 9

the capabilities for the file to be edited and its scratch file, then no matter
what tricks are lurking inside the editor, all it can do is read those two files.
On the other hand, if the editor can access all of the user’s objects, then Tro-
jan horses can do their dirty work, capabilities or not.

16. The compiler could insert code on all array references to do bounds checking.
This feature would prevent buffer overflow attacks. It is not done because it
would slow down all programs significantly. In addition, in C it is not illegal
to declare an array of size 1 as a procedure parameter and then reference ele-
ment 20, but clearly the actual array whose address has been passed had
better have at least 20 elements.

17. From a security point of view, it would be ideal. Used blocks sometimes are
exposed, leaking valuable information. From a performance point of view,
zeroing blocks wastes CPU time, thus degrading performance.

18. It should read the entire password all the time, even if it sees early on that the
password is wrong. That way, a page fault will always occur when the pass-
word is partly on an out-of-memory page.

19. For any operating system all programs must either start execution at a known
address or have a starting address stored in a known position in the program
file header. (a) The virus first copies the instructions at the normal start
address or the address in the header to a safe place, and then inserts a jump to
itself into the code or its own start address into the header. (b) When done
with its own work, the virus executes the instructions it borrowed followed by
a jump to the next instruction that would have been executed, or transfers
control to the address it found in the original header.

20. A master boot record requires only one sector, and if the rest of the first track
is free it provides space where a virus can hide the original boot sector as well
as a substantial part of its own code. Modern disk controllers read and buffer
entire tracks at a time, so there will be no perceivable delay or sounds of
additional seeks as the extra data is read.

21. C programs have extension .c. Instead of using the access system call to test
for execute permission, examine the file name to see if it ends in .c. This
code will do it

char *file3name;
int len;
file3name = dp->d3name;
len = strlen(file3name);
if (strcmp(&file3name[len − 2], ".c") == 0) infect(s);

PROBLEM SOLUTIONS FOR CHAPTER 9 41

22. They probably cannot tell, but they can guess that XORing one word within
the virus with the rest will produce valid machine code. Their computers can
just try each virus word in turn and see if any of them produce valid machine
code. To slow down this process, Virgil can use a better encryption algo-
rithm, such as using different keys for the odd and even words, and then rotat-
ing the first word left by some number of bits determined by a hash function
on the keys, rotating the second word that number of bits plus one, etc.

23. The compressor is needed to compress other executable programs as part of
the process of infecting them.

24. Most viruses do not want to infect a file twice. It might not even work.
Therefore it is important to be able to detect the virus in a file to see if it is
already infected. All the techniques used to make it hard for antivirus
software to detect viruses also make it hard for the virus itself to tell which
files have been infected.

25. First, running the fdisk program from the hard disk is a mistake. It may be
infected and it may infect the boot sector. It has to be run from the original
CD-ROM or a write-protected floppy disk. Second, the restored files may be
infected. Putting them back without cleaning them may just reinstall the
virus.

26. Yes, but the mechanism is slightly different from Windows. In UNIX a com-
panion virus can be installed in a directory on the search path ahead of the
one in which the real program lives. The most common example is to insert a
program ls in a user directory, which effectively overrides /bin/ls because it is
found first.

27. A worm is a freestanding program that works by itself. A virus is a code
fragment that attaches to another program. The worm reproduces by making
more copies of the worm program. The virus reproduces by infecting other
programs.

28. Obviously, executing any program from an unknown source is dangerous.
Self-extracting archives can be especially dangerous, because they can
release multiple files into multiple directories, and the extraction program
itself could be a Trojan horse. If a choice is available it is much better to
obtain files in the form of an ordinary archive, which you can then extract
with tools you trust.

29. It does not matter. If zero fill is used, then S2 must contain the true prefix as
an unsigned integer in the low-order k bits. If sign extension is used, then S2
must also be sign extended. As long as S2 contains the correct results of
shifting a true address, it does not matter what is in the unused upper bits of
S2.

42 PROBLEM SOLUTIONS FOR CHAPTER 9

30. Here is the protection matrix:22
Object22

Domain PPP-Notes prog1 project.t splash.gif22
asw Read Read

Exec

Read
Write

Read
Write

22
gmw Read

Write
Read
Write22

users Read Read
Write22

devel ReadRead

Exec2211
1
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1
1
1

31. The ACLs are as follows:2222222222222222222222222222222222222
File ACL2222222222222222222222222222222222222
PPP-Notes gmw:RW; *:R
prog1 asw:RWX; devel:RX; *:R
project.t asw:RW; users:RW
splash.gif asw:RW; devel:R222222222222222222222222222222222222211

1
1
1
1
1

11
1
1
1
1
1

Assume that * means all.

32. If asw wants to allow gmw but no other member of users to look at splash.gif
he could modify the ACL to asw:RW; devel:R; gmw:R.

33. Existing browsers come preloaded with the public keys of several trusted
third parties such as the Verisign Corporation. Their business consists of ver-
ifying other companies’ public keys and making up certificates for them.
These certificates are signed by, for example, Verisign’s private key. Since
Verisign’s public key is built into the browser, certificates signed with its
private key can be verified.

34. It is just entered into the matrix twice. In the example given in the text,
printer1 is in two domains simultaneously. There is no problem here.

35. To make a file readable by everyone except one person, access control lists
are the only possibility. For sharing private files, access control lists or capa-
bilities can be used. To make files public, access control lists are easiest but
it may also be possible to put a capability for the file or files in a well-known
place in a capability system.

36. The server will verify that the capability is valid and then generate a weaker
capability. This is legal. After all, the friend can just give away the

PROBLEM SOLUTIONS FOR CHAPTER 9 43

capability it already has. Giving it the power to give away something even
weaker is not a security threat. If you have the ability to give away, say,
read/write power, giving away read-only power is not a problem.

37. No. That would be writing down, which violates the * property.

38. No. That would be reading up, which violates the simple security property.

39. A process writing to another process is similar to a process writing to a file.
Consequently, the * property would have to hold. A process could write up
but not write down. Process B could send to C, D, and E, but not to A.

40. In the original photo, the R, G, and B, axes each allow discrete integral values
from 0 to 255, inclusive. This means that there are 224 valid points in color
space that a pixel can occupy. When 1 bit is taken away for the covert chan-
nel, only the even values are allowed (assuming the secret bit is replaced by a
0 everywhere). Thus as much of the space is covered, but the color resolution
is only half as good. In total, only 1/8 of the colors can be represented. The
disallowed colors are mapped onto the adjacent color all of whose values are
even numbers, for example, the colors (201, 43, 97), (201, 42, 97), (200, 43,
96), and (200, 42, 97) now all map onto the point (200, 42, 96) and can no
longer be distinguished.

41. The image contains 1,920,000 pixels. Each pixel has 3 bits that can be used,
given a raw capacity of 720,000 bytes. If this is effectively doubled due to
compressing the text before storing it, the image can hold ASCII text occupy-
ing about 1,440,000 bytes before compression. Thus a single image can hold
an entire floppy disk’s worth of ASCII data. There is no expansion due to the
steganography. The image with the hidden data is the same size as the origi-
nal image. The efficiency is 25%. This can be easily seen from the fact that
1 bit of every 8-bit color sample contains payload, and the compression
squeezes two bits of ASCII text per payload bit. Thus per 24-bit pixel, effec-
tively 6 bits of ASCII text are being encoded.

42. The dissidents could sign the messages using a private key and then try to
widely publicize their public key. This might be possible by having someone
smuggle it out of the country and then post it to the Internet from a free coun-
try.

43. Following are two C programs that do the job. Run in in the same directory
but in different windows. Start decode first.

/* covert encoder - Written by Albert S. Woodhull 3 Dec 2000
C version, using file permissions

This program expects to read a string of ASCII ’0’ and ’1’ characters
from its standard input. It generates a covert output by alternately

44 PROBLEM SOLUTIONS FOR CHAPTER 9

making a file owner readable or not readable, controlling the time the
file is in each state.

Each "bit time" consists of three time intervals. The middle interval
determines the value of the bit. To signal a ’0’ the file is readable
during the first two intervals and not readable during the last
interval. To signal a ’1’ the file is readable during the first
interval and not readable during the second and third intervals.

A collaborator can determine the readability of a file for its owner even
though the collaborator himself has no access, as long as the file is in
a directory that can be read.

The sleep system call is used to control the timing. This makes
the whole process pretty slow, since you can’t sleep less than 1 second.

*/

#define MAX 80

#include <stdio.h>
#include <fcntl.h>

int main(void)
{

int c;
int i = 0;
int n = 0;
int fd;
char s[MAX];

/* get the input string, save only ’0’s and ’1’s, count chars */
while (((c = getchar()) != EOF) && (n < MAX))

if ((c == ’0’) || (c == ’1’)) s[n++] = c;
s[n] = ’ ’;

/* create the signal file */
fd = creat("/tmp/tmp000", 0600);

/* for each ’0’ or ’1’ execute the corresponding sequence */
while (i != n)
{

c = s[i++];
chmod("/tmp/tmp000", 0);

PROBLEM SOLUTIONS FOR CHAPTER 9 45

switch(c)
{

case ’0’:
sleep(2);
chmod("/tmp/tmp000", 0400);
sleep(1);
break;

case ’1’:
sleep(1);
chmod("/tmp/tmp000", 0400);
sleep(2);
break;

}
}

/* get rid of the evidence */
unlink("/tmp/tmp000");

}

--

/* covert decoder - Written by Albert S. Woodhull 3 Dec 2000
C version, using file permissions.

This program repeatedly checks the permissions of a file. The
companion encoder alternately changes the owner readable bit from 0 to
1 on a timed basis. A transition from readable to unreadable signals
the beginning of a bit, the timing of the transition back to readable
signals the value of the bit. If the unreadable time is longer than
the readable time the bit is a zero, if it is shorter the bit is a 1.

*/

#include <stdio.h>
#include <sys/stat.h>

#define TRUE 1
#define FALSE 0

int main(void)
{

struct stat statbuf;
int decoding, c0, c1, mode, p0, p1;

46 PROBLEM SOLUTIONS FOR CHAPTER 9

/* Start the decoder before starting the encoder. This loop waits for
the file to be created. */

while (stat("/tmp/tmp000", &statbuf) < 0) /* do nothing */ ;

mode = statbuf.st3mode;

/* This loop detects the beginning of the first bit. */
while ((mode & S3IRUSR) != 0)
{

stat("/tmp/tmp000", &statbuf);
mode = statbuf.st3mode;

}

decoding = TRUE;
while (decoding == TRUE)
{

c0 = c1 = 0;

/* phase 0, use c0 to count */
p0 = TRUE;
while (p0 == TRUE)
{

/* refresh statbuf and check for end of signal */
if (stat("/tmp/tmp000", &statbuf) < 0)

p0 = FALSE;
mode = statbuf.st3mode;
if ((mode & S3IRUSR) == 0) c0++; else p0 = FALSE;

}

/* phase 1, use c1 to count */
p1 = TRUE;
while (p1 == TRUE)
{

/* refresh statbuf and check for end of signal */
if (stat("/tmp/tmp000", &statbuf) <0) p1 = FALSE;
mode = statbuf.st3mode;
if ((mode & S3IRUSR) != 0) c1++; else p1 = FALSE;

}

/* decide upon the bit value and output it */
if (c0 > c1) printf("0"); else printf("1");

/* make output visible now */

PROBLEM SOLUTIONS FOR CHAPTER 9 47

fflush(NULL);

/* see if the signal is still there */
if (stat("/tmp/tmp000", &statbuf) < 0)
{

decoding = FALSE;
putchar(’0);

}
}

}

SOLUTIONS TO CHAPTER 10 PROBLEMS

1. The calling process has to put the system call number in a register or on the
stack.

2. The files that will be listed are: bonefish, quacker, seahorse, and weasel.

3. It prints the number of lines of the file xyz that contain the string ‘‘nd’’ in
them.

4. The pipeline is as follows:

head –8 z | tail –1

The first part selects out the first eight lines of z and passes them to tail,
which just writes the last one on the screen.

5. They are separate so standard output can be redirected without affecting stan-
dard error. In a pipeline, standard output may go to another process, but stan-
dard error still writes on the terminal.

6. Each program runs in its own process so six new processes are started.

7. Yes. The child’s memory is an exact copy of the parent’s, including the stack.
Thus if the environment variables were on the parent’s stack, they will be on
the child’s stack too.

8. Since text segments are shared, only 36 KB has to be copied. The machine
can copy 80 bytes per microsec, so 36 KB takes 0.46 msec. Add another 1
msec for getting into and out of the kernel, and the whole thing takes roughly
1.46 msec.

9. The child can change a few variables and then exit. With fork, the parent is
guaranteed that nothing the child can do will affect the parent’s address

48 PROBLEM SOLUTIONS FOR CHAPTER 10

space. With vfork, this guarantee is no longer valid, introducing the possibil-
ity of hard-to-find bugs.

10. Every ∆T the CPU usage is divided in half, so after one interval it is 10, then
5, 2, 1, and 0. It takes 5∆T to hit 0.

11. Yes. It cannot run any more so the earlier its memory goes back on the free
list, the better.

12. Signals are like hardware interrupts. One example is the alarm signal, which
signals the process at a specific number of seconds in the future. Another is
the floating-point exception signal, which indicates division by zero or some
other error. Many other signals also exist.

13. Malicious users could wreak havoc with the system if they could send signals
to arbitrary unrelated processes. Nothing would stop a user from writing a
program consisting of a loop that sent a signal to the process with PID i for all
i from 1 to the maximum PID. Many of these processes would be unprepared
for the signal and would be killed by it. If you want to kill off your own
processes, that is all right, but killing off your neighbor’s processes is not
acceptable.

14. It would be impossible using UNIX or Windows 2000, but the Pentium
hardware does make this possible. What is needed is to use the segmentation
features of the hardware, which are not supported by either UNIX or Windows
2000. The operating system could be put in one or more global segments,
with protected procedure calls to make system calls instead of traps. OS/2
works this way.

15. Generally, daemons run in the background doing things like printing and
sending email. Since people are not usually sitting on the edge of their chairs
waiting for them to finish, they are given low priority, soaking up excess CPU
time not needed by interactive processes.

16. A PID must be unique. Sooner or later the counter will wrap around and go
back to 0. Then it will so upward to, for example, 15. If it just happens that
process 15 was started months ago, but is still running, 15 cannot be assigned
to a new process. Thus after a proposed PID is chosen using the counter, a
search of the process table must be made to see if the PID is already in use.

17. When the process exits, the parent will be given the exit status of its child.
The PID is needed to be able to identify the parent so the exit status can be
transferred to the correct process.

18. If all of the sharing3flags bits are set, the clone call starts a conventional
thread. If all the bits are cleared the call is essentially a fork.

PROBLEM SOLUTIONS FOR CHAPTER 10 49

19. The 1000 is completely arbitrary. The only requirement is that every real-
time thread gets a higher goodness than every timesharing thread.

20. Loading the operating system requires understanding the file system format,
being able to search the root directory, and being able to interpret the execut-
able binary format in which the operating system is stored on the disk. That
is asking a lot from a 512-byte bootstrap program. It can just barely load the
boot program from a fixed location, but this can be a long program, with
detailed knowledge of the file system, directory, and binary formats.

21. With shared text, 100 KB is needed for the text. Each of the three processes
needs 80 KB for its data segment and 10 KB for its stack, so the total memory
needed is 370 KB. Without shared text, each program needs 190 KB, so three
of them need a total of 570 KB.

22. Yes. With a 16-bit field, there can be a maximum of 64K core map entries,
hence a maximum of 64K page frames. Thus there is no way to handle
memories larger than 64 MB. When the original VAX came out, 2 MB was
considered a very large memory, and 64 MB was effectively infinity. Now
this 64-MB limit has become quite noticeable.

23. The text segment cannot change, so it never has to be paged out. If its frames
are needed, they can just be abandoned. The pages can always be retrieved
from the file system. The data segment must not be paged back to the execut-
able file, because it is likely that it has changed since being brought in. Pag-
ing it back would ruin the executable file. The stack segment is not even
present in the executable file.

24. Two process could map the same file into their address spaces at the same
time. This gives them a way to share physical memory. Half of the shared
memory could be used as a buffer from A to B and half as a buffer from B to
A. To communicate, one process writes a message to its part of the shared
memory, then a signal to the other one to indicate there is a message waiting
for it. The reply could use the other buffer.

25. Memory address 65,536 is file byte 0, so memory address 72,000 is file byte
6464.

26. Originally, four pages worth of the file were mapped: 0, 1, 2, and 3. The call
succeeds and after it is done, only pages 2 and 3 are still mapped, that is,
bytes 16,384 though 32,767

27. It is possible. For example, when the stack grows beyond the bottom page, a
page fault occurs and the operating system normally assigns the next lowest
page to it. However, it the stack has bumped into the data segment, the next
page cannot be allocated to the stack, so the process must be terminated.
Even if there is another page available in virtual memory, the paging area of

50 PROBLEM SOLUTIONS FOR CHAPTER 10

the disk might be full, making it impossible to allocate backing store for the
new page, which would also terminate the process.

28. It is possible if the two blocks are not buddies. Consider the situation of
Fig. 10-0(e). Two new requests come in for 8 pages each. At this point the
bottom 32 pages of memory are owned by 4 different users, each with 8
pages. Now users 1 and 2 release their pages, but users 0 and 3 hold theirs.
This yields a situation with 8 pages used, 8 pages free, 8 pages free, and 8
pages used. We have two adjacent blocks of equal size that cannot be merged
because they are not buddies.

29. Paging to a partition allows the use of a raw device, without the overhead of
using file system data structures. To access block n, the operating system can
calculate its disk position by just adding it to the starting block of the parti-
tion. There is no need to go through all the indirect blocks that would other-
wise be needed.

30. Opening a file by a path relative to the working directory is usually more con-
venient for the programmer or user, since a shorter path name is needed. It is
also usually much simpler and requires fewer disk accesses.

31. The results are as follows.

(a) The lock is granted.
(b) The lock is granted.
(c) C is blocked since bytes 20 through 30 are unavailable.
(d) A is blocked since bytes 20 through 25 are unavailable.
(e) B is blocked since byte 8 is unavailable for exclusive locking.

At this point we now have a deadlock. None of the processes will ever be
able to run again.

32. The issue arises of which process gets the lock when it becomes available.
The simplest solution is to leave it undefined. This is what POSIX does
because it is the easiest to implement. Another is to require the locks to be
granted in the order they were requested. This approach is more work for the
implementation, but prevents starvation. Still another possibility is to let
processes provide a priority when asking for a lock, and use these priorities to
make a choice.

33. One approach is give an error and refuse to carry out the lseek. Another is to
make the offset become negative. As long as it is not used, there is no harm
done. Only if an attempt is made to read or write the file should be error mes-
sage be given. If the lseek is followed by another lseek that makes the offset
positive, no error is given.

34. The owner can read, write, and execute it, and everyone else (including the
owner’s group) can just read and execute it, but not write it.

PROBLEM SOLUTIONS FOR CHAPTER 10 51

35. Yes. Any block device capable of reading and writing an arbitrary block can
be used to hold a file system. Even if there were no way to seek to a specific
block, it is always possible to rewind the tape and then count forward to the
requested block. Such a file system would not be a high-performance file sys-
tem, but it would work. The author has actually done this on a PDP-11 using
DECtapes and it works.

36. No. The file still has only one owner. If, for example, only the owner can
write on the file, the other party cannot do so. Linking a file into your direc-
tory does not suddenly give you any rights you did not have before. It just
creates a new path for accessing the file.

37. When the working directory is changed, using the chdir system call, the i-
node for the new working directory is fetched and kept in memory, in the i-
node table. The i-node for the root directory is also there. In the user struc-
ture, pointers to both of these are maintained. When a path name has to be
parsed, the first character is inspected. If it is a ‘‘/’’, the pointer to the root i-
node is used as the starting place, otherwise the pointer to the working
directory’s i-node is used.

38. Access to the root directory’s i-node does not require a disk access, so we
have the following:

1. Reading the / directory to look up ‘‘usr’’.
2. Reading in the i-node for /usr.
3. Reading the /usr directory to look up ‘‘ast’’.
4. Reading in the i-node for /usr/ast.
5. Reading the /usr/ast directory to look up ‘‘work’’.
6. Reading in the i-node for /usr/ast/work.
7. Reading the /usr/ast/work directory to look up ‘‘f’’.
8. Reading in the i-node for /usr/ast/work/f.

Thus in total, eight disk accesses are needed before the needed i-node is in
memory.

39. The i-node holds 10 addresses. The single indirect block holds 256. The dou-
ble indirect block leads to 65,536, and the triple indirect leads to 16,777,216,
for a total of 16,843,018 blocks. This limits the maximum file size to 10 +
256 + 65,536 + 16,777,216 blocks, which is about 16 gigabytes.

40. When a file is closed, the counter of its i-node in memory is decremented. If
it is greater than zero, the i-node cannot be removed from the table because
the file is still open in some process. Only when the counter hits zero can the
i-node be removed. Without the reference count, the system would not know
when to remove the i-node from the table. Making a separate copy of the i-
node each time the file was opened would not work because changes made in
one copy would not be visible in the others.

52 PROBLEM SOLUTIONS FOR CHAPTER 10

41. Buffer cache accesses are so infrequent compared to memory accesses, that
the cost of managing the LRU queue in software is acceptable. With pages,
there are typically one or two references per instruction, which makes main-
taining an LRU queue impractical.

42. By forcing the contents of the buffer cache out onto the disk every 30 sec,
damage done by a crash is limited to 30 sec. If update did not run, a process
might write a file, then exit with the full contents of the file still in the buffer
cache. In fact, the user might then log out and go home with the file still in
the buffer cache. An hour later the system might crash and lose the file, still
only in the buffer cache and not on disk. The next day we would not have a
happy user.

43. All it has to do is set the link count to 1 since only one directory entry refer-
ences the i-node.

44. It is generally getpid, getuid, getgid, or something like that. All they do is
fetch one integer from a known place and return it. Every other call does
more.

45. The file is simply removed. This is the normal way (actually, the only way)
to remove a file.

46. A 1.44-MB floppy disk can hold 1440 blocks of raw data. The boot block,
super block, group descriptor block, block bitmap, and i-node bitmap of an
ext2 file system each use 1 block. If 8192 128-byte i-nodes are created, these
i-nodes would occupy another 1024 blocks, leaving only 411 blocks unused.
At least one block is needed for the root directory, leaving space for 410
blocks of file data. Actually the Linux mkfs program is smart enough not to
make more i-nodes than can possibly be used, so the inefficiency is not this
bad. By default 184 inodes occupying 23 blocks will be created. However,
because of the overhead of the ext2 file system, Linux normally uses the
MINIX file system on floppy disks and other small devices.

47. It is often essential to have someone who can do things that are normally for-
bidden. For example, a user starts up a job that generates an infinite amount
of output. The user then logs out and goes on a three-week vacation to Lon-
don. Sooner or later the disk will fill up, and the superuser will have to manu-
ally kill the process and remove the output file. Many other such examples
exist.

48. Probably someone had the file open when the professor changed the permis-
sions. The professor should have deleted the file and then put another copy of
his master file into the public directory. Also, he should use a better method
for distributing files, such as a web page, but that is beyond the scope of this
exercise.

PROBLEM SOLUTIONS FOR CHAPTER 10 53

SOLUTIONS TO CHAPTER 11 PROBLEMS

1. An advantage is that everything is in one place, which makes it easy to find.
A disadvantage is that one bad disk block in the top-level index in a hive can
wreak disaster with the whole system.

2. The HAL is simple and straightforward. Including the mouse, the disk, and
all the other device drivers in it would make it unwieldy and destroy its func-
tion as a thin layer that hides certain basic hardware differences of the com-
puter itself, but not the I/O devices.

3. A genealogical database might find it convenient to record the birth and death
dates of one’s ancestors using the standard system time format. In fact, any
historical database might use this.

4. DPCs run in an arbitrary context. APCs run in the context of a specific
thread. The act of signaling the process involves writing a frame on the
user’s stack so the signal can be returned from. This requires access to the
user’s address space. Consequently, an APC is needed.

5. (a) The process manager uses the object manager to create threads.
(b) The memory manager uses the security manager to see if a file can be
mapped.
(c) The plug-and-play manager uses the configuration mgr to register a new
device.

6. A signal is handled by a new thread in some process’ context. For example,
when the Quit key is hit or even when a thread faults. It does not really make
any sense to catch a signal in a thread’s context. It really has to be per proc-
ess. Thus signal handling is really a per process activity.

7. It would make more sense on servers. Client machines have fewer concurrent
processes. Shared libraries only make sense if there are multiple processes
sharing them. Otherwise, it is more efficient to statically link the libraries and
accept duplication. The advantage of static linking is that only those pro-
cedures that are actually needed are loaded. With DLLs there may be pro-
cedures in memory that no one is using.

8. The functions in ntdll.dll are those needed by the subsystems, that is, the sys-
tem calls. The functions in ntoskrnl.exe are exported functions used by
drivers and other parts of the operating system. There is no relation between
them. The fact that they are even close is just a coincidence. They could
easily have differed by a factor of five.

9. No. The low-order 3 bits of the object pointer in the handle are used for flags,
as stated in the text. These must be masked off before the pointer can be

54 PROBLEM SOLUTIONS FOR CHAPTER 11

followed. Consequently every pointer has 3 zero bits as the low-order bits.
This means that object headers must start at addresses that are multiples of 8
bytes.

10. There is a limit of 32 operations because there are only 32 rights bits in the
object handle.

11. It is not possible because semaphores and mutexes are executive objects and
critical sections are not. They are managed mostly in user space (but do have
a backing semaphore when blocking is needed). The object manager does not
know about them and they do not have handles, as was stated in the text.
Since WaitForMultipleObjects is a system call, the system cannot perform a
Boolean OR of several things, one of which it knows nothing about. The call
must be a system call because semaphores and mutexes are kernel objects. In
short, it is not possible to have any system call that mixes kernel objects and
user objects like this. It has to be one or the other.

12. (a) The last thread exits.
(b) A thread executes ExitProcess.
(c) Another process with a handle to this one kills it.

13. The Windows 2000 Professional quantum is 20 msec and there are 12 threads
at priorities higher than 3. Thus the first priority 3 thread must wait 240 msec
until it gets a shot.

14. At most a few microseconds. It preempts the current thread immediately. It
is just a question of how long it takes to run the dispatcher code to do the
thread switch.

15. Having your priority lowered below the base priority could be used as a pun-
ishment for using excessive CPU time or other resources.

16. The processor will not permit such instructions to be executed in user mode
and will trap them as errors. In principle, a filter that reads a binary program
and replaces all IN and OUT instructions with calls to routines that use legal
OS services could be written. Alternatively, the program could be inter-
preted, with these instructions handled by making Windows 2000 system
calls to do the I/O.

17. One way is to increase the priority of important processes. A second way is
to give important processes longer quanta.

18. The problem cannot be solved using page tables. Pages tables map between
virtual and physical addresses. The problem here is that the shared procedure
is being placed at different virtual addresses. If an instruction at address
65,536 reads JMP 300, it will jump to invalid memory (below 64 KB) and trap.
If it is patched to read JMP 65836 that will go forward 300 bytes, which is

PROBLEM SOLUTIONS FOR CHAPTER 11 55

correct for that process. But if a different process has this instruction at, say,
address 131,072, jumping to 65836 is wrong. It does not matter where in
physical memory the page is. For the second process, the CPU is generating
an incorrect virtual address. No setting of the page tables can correctly map
an incorrect virtual address.

19. The Pentium has multiple segments, each starting at virtual address 0. Each
.dll file could be mapped into a separate segment starting at virtual address 0
in that segment. To do this, segmentation would have to be supported by
Windows 2000.

20. Yes. The VADs are the way the memory manager keeps track of which
addresses are in use and which are free. A VAD is needed for a reserved
region to prevent a subsequent attempt to reserve or commit it from succeed-
ing.

21. (1) is a policy decision about when and how to trim a working set. (2) and (3)
are required. (4) is a policy decision about how aggressively to write dirty
pages to the disk. (5) and (6) are required. (7) is not really a policy question
or required; the system never has to zero pages, but if the system is otherwise
idle, zeroing pages is always better than just executing the idle loop.

22. It is not moved at all. A page only goes onto one of the lists when it is not
present in any working set. If it is still in one working set, it does not go on
any of the free lists.

23. It cannot go on the modified list, since that contains pages that are still
mapped in and could be faulted back. An unmapped page is not in that
category. It certainly cannot go directly to the free list because those pages
can be abandoned at will. A dirty page cannot be abandoned at will. Conse-
quently, it must first be written back to the disk, then it can go on the free list.

24. Copying one word requires one read and one write, for a total of 20 nsec to
move 4 bytes. This comes to 5 nsec per byte copied. An XGA screen has
1024 × 768 × 3 bytes, which takes about 11.8 msec to copy in the best case
(assuming the program runs entirely out of the L1 cache).

25. There are two records. The fields are as follows. The values before the colon
are the header fields:

Record 1 = 0, 8: (3, 50), (1, 22), (3, 24), (2, 53)
Record 2 = 10, 10: (1, 60)

26. The fact that block 66 is contiguous with an existing run does not help as the
blocks are not in logical file order. In other words, using block 66 as the new
block is no better than using block 90. The entries in the MFT are:

0, 8: (4, 20), (2, 64), (3, 80), (1, 66)

56 PROBLEM SOLUTIONS FOR CHAPTER 11

27. It is an accident. The 16 blocks apparently compressed to 8 blocks. It could
have been 9 or 11 just as easily.

28. All except the user SID could be removed without affecting the strength of
the security.

SOLUTIONS TO CHAPTER 12 PROBLEMS

1. Improvements in computer hardware have been largely due to smaller transis-
tors. Some factors that can limit this are: (a) the wave properties of light may
limit conventional photolithographic techniques for producing integrated cir-
cuits, (b) the mobility of individual atoms in solids can lead to degradation of
the properties of very thin layers of semiconductors, insulators, and conduc-
tors, and (c) background radioactivity can disrupt molecular bonds or affect
very small stored charges. There are certainly others.

2. For highly interactive programs, the event model may be better. Of these,
only (b) is interactive. Thus (a) and (c) are algorithmic and (b) is event
driven.

3. Putting it there saved some RAM and reduced loading time to 0, but most
important, it made it easy for third-party software developers to use the GUI,
thus ensuring a uniformity of look and feel across all software.

4. No. The difference relates more to the fact that DNS servers cache and are
organized hierarchically. The paths could easily have been given in the top-
down order, but the convention of doing it backward is now well established.

5. Possibly stat is redundant. It could be achieved by a combination of open,
fstat, and close. It would be very difficult to simulate any of the others.

6. If drivers are put below the threads, then drivers cannot be independent
threads in the style of MINIX. They have to run as part of some other thread,
more in the UNIX style.

7. It is possible. What is needed is a user-level process, the semaphore server.
To create a semaphore, a user sends it a message asking for a new semaphore.
To use it, the user process passes the identity of the semaphore to other
processes. They can then send messages to the semaphore server asking for
an operation. If the operation blocks, no reply is sent back, thus blocking the
caller.

8. The pattern is 8 msec of user code, then 2 msec of system code. With the
optimization, each cycle is now 8 msec of user code and 1 msec of system
code. Thus the cycle is reduced from 10 msec to 9 msec. Multiplying by
1000 such cycles, a 10-sec program now takes 9 sec.

PROBLEM SOLUTIONS FOR CHAPTER 12 57

9. The mechanism for selling to customers is a building with shelves, employees
to stock the shelves, cashiers to handle payment, etc. The policy is what kind
of products the store sells.

10. External names can be as long as needed and variable length. Internal names
are generally 32 bits or 64 bits and always fixed length. External names need
not be unique. Two names can point to the same object, for example, links in
the UNIX file system. Internal names must be unique. External names may
be hierarchical. Internal names are generally indices into tables and thus
form a flat name space.

11. If the new table is 2× as big as the old one, it will not fill up quickly, reducing
the number of times an upgraded table will be needed. On the other hand, so
much space may not be needed, so it may waste memory. This is a classic
time versus space trade-off.

12. It would be risky to do that. Suppose that the PID was at the very last entry.
In that case, exiting the loop would leave p pointing to the last entry. How-
ever, if the PID was not found, p might end up pointing to the last entry or to
one beyond it, depending on the details of the compiled code, which optimi-
zations are turned on, and so on. What might work with one compiler could
fail with a different one. It is better to set a flag.

13. It could be done, but would not be a good idea. An IDE or SCSI driver is
many pages long. Having conditional code so long makes the source code
hard to follow. It would be better to put each one in a separate file and then
use the Makefile to determine which one to include. Or at the very least, con-
ditional compilation could be used to include one driver file or the other.

14. Yes. It makes the code slower. Also, more code means more bugs.

15. Not easily. Multiple invocations at the same time could interfere with one
another. It might be possible if the static data were guarded by a mutex, but
that would mean that a caller to a simple procedure might be unexpectedly
blocked.

16. Yes. The code is replicated every time the macro is called. If it is called
many times, the program will be much bigger. This is a typical time-space
trade-off. A bigger, faster program instead of a smaller, slower program.
However, in an extreme case, the larger program might not fit in the TLB,
causing it to thrash and thus run slower.

17. Start by EXCLUSIVE ORing the lower and upper 16 bits of the word
together to form a 16-bit integer, s. For each bit, there are four cases: 00
(results in a 0), 01 (results in a 1), 10 (results in a 1), and 11 (results in a 0).
Thus if the number of 1s in s is odd, the parity is odd; otherwise it is even.

58 PROBLEM SOLUTIONS FOR CHAPTER 12

Make a table with 65,536 entries, each containing one byte with the parity bit
in it. The macro looks like this:

#define parity(w) bits[(w & 0xFFFF) ˆ ((w>>16) & 0xFFFF)]

18. No circumstances. The ‘‘compressed’’ color value would be as big as the ori-
ginal, and in addition, a huge color palette could be needed. It makes no
sense at all.

19. The 8-bit-wide color palette contains 256 entries of 3 bytes each for a total of
768 bytes. The saving per pixel is 2 bytes. Thus with more than 384 pixels,
GIF wins. A 16-bit-wide color palette contains 65,536 entries of 3 bytes
each, for 196,608 bytes. The saving here is 1 byte per pixel. Thus with more
than 196,608 pixels, the 16-bit compression wins. Assuming a 4:3 ratio, the
break-even point is an image of 512 × 384 pixels. For VGA (640 × 480), 16-
bit color requires less data than true 24-bit color.

20. For a path that is in the path name cache, it has no effect because the i-node is
bypassed anyway. If it is not read, it does not matter if it is already in
memory. For a path that is not in the name cache but involves a pinned i-
node, then pinning does help since it eliminates a disk read.

21. Recording the date of last modification, the size, and possibly a calculated
signature such as a checksum or CRC can help determine if it has changed
since last referenced. A caveat: a remote server could provide false informa-
tion about a file, and local regeneration of a calculated signature might be
necessary.

22. The file could be given a version number or a checksum and this information
stored along with the hint. Before accessing a remote file, a check would be
made to make sure the version number or checksum still agreed with the
current file.

23. A file system will typically try to write new data to the nearest available disk
block following the last one used. If two files are being written simultane-
ously this can result in interleaving the data blocks on the disk, resulting in
both files being fragmented and thus more difficult to read. This effect can be
ameliorated by buffering data in memory to maximize the size of writes, or
writing to temporary files and then copying each output to a permanent file
when the program terminates.

24. Brooks was talking about large projects in which communication between the
programmers slows everything down. That problem does not occur with a 1-
person project and so productivity can be higher.

25. If a programmer can produce 1000 lines of code for a cost of $100,000, a line
of code costs $100. In Chap. 11, we stated that Windows 2000 consisted of

PROBLEM SOLUTIONS FOR CHAPTER 12 59

29 million lines of code, which comes to $2.9 billion. That seems like an
awful lot. Probably Microsoft has managed to improve programmer produc-
tivity using better tools so a programmer can produce several thousand lines
of code per year.

26. Suppose memory costs $100 for 64 MB (check against current prices). Then
a low-end machine needs $1600 worth of disk. If the rest of the PC is $500,
the total cost comes to $2100. This is too expensive for the low-end market.

27. An embedded system may run one only one or a small number of programs. If
all programs can be kept loaded into memory at all times there might be no
need for either a memory manager or a file system. Additionally, drivers
would be needed only for a few I/O devices, and it might make more sense to
write the I/O drivers as library routines. Library routines might also be better
compiled into individual programs, rather than into shared libraries, eliminat-
ing the need for shared libraries. Probably many other features could be elim-
inated in specific cases.

