4．1 Sets

Name

$$
\begin{aligned}
& \neq- \text { Inequality } \\
& \notin-\text { Non-membership }
\end{aligned}
$$

Definition

$$
\begin{aligned}
& \begin{array}{l}
-\neq-: X \leftrightarrow X
\end{array} \\
& -\notin-: X \leftrightarrow \mathbb{P} X \\
& \forall x, y: X \bullet x \neq y \Leftrightarrow \neg(x=y) \\
& \forall x: X ; S: \mathbb{P} X \bullet x \notin S \Leftrightarrow-(x \in S)
\end{aligned}
$$

Description

The relations \neq and \notin are the complements of the equality and membership relations expressed by $=$ and \in respectively．

Laws
 $x \neq y \Rightarrow y \neq x$

Name
dom，ran－Domain and range of a relation

Definition

$$
\begin{aligned}
& =[X, Y] \\
& \quad \operatorname{dom}:(X \leftrightarrow Y) \rightarrow \mathbb{P} X \\
& \text { ran }:(X \leftrightarrow Y) \longrightarrow \mathbb{P} Y \\
& \forall R: X \leftrightarrow Y \bullet \\
& \quad \operatorname{dom} R=\{x: X ; y: Y \mid x \underline{R} y \bullet x\} \wedge \\
& \quad \operatorname{ran} R=\{x: X ; y: Y \mid x \underline{R} y \bullet y\}
\end{aligned}
$$

Name

```
\triangleleft Domain restriction
\triangleright - Range restriction
```


Definition

$$
\begin{aligned}
& =[X, Y] \overline{\overline{\mathbb{P}} X \times(X \leftrightarrow Y) \longrightarrow(X \leftrightarrow Y)} \\
& -\triangleleft-\triangleright-:(X \leftrightarrow Y) \times \mathbb{P} Y \longrightarrow(X \leftrightarrow Y) \\
& \\
& -S: \mathbb{P} X ; R: X \leftrightarrow Y \bullet \\
& \\
& \quad S \triangleleft R=\{x: X ; y: Y \mid x \in S \wedge x \underline{R} y \bullet x \mapsto y\} \\
& \forall R: X \leftrightarrow Y ; T: \mathbb{P} Y \bullet \\
& \\
& \quad R \triangleright T=\{x: X ; y: Y \mid x \underline{R} y \wedge y \in T \bullet x \mapsto y\}
\end{aligned}
$$

Name

$\triangleleft-$ Domain anti－restriction
$\triangleright-$ Range anti－restriction

Definition

$$
\begin{aligned}
& \begin{aligned}
&=X, Y] \\
&-\triangleleft_{-}: \mathbb{P} X \times(X \leftrightarrow Y) \rightarrow(X \leftrightarrow Y)
\end{aligned} \\
& -\nabla_{-}:(X \leftrightarrow Y) \times \mathbb{P} Y \rightarrow(X \leftrightarrow Y) \\
& \forall S: \mathbb{P} X ; R: X \leftrightarrow Y \text { 。 } \\
& S \notin R=\{x: X ; y: Y \mid x \notin S \wedge x \underline{R} y \bullet x \mapsto y\} \\
& \forall R: X \leftrightarrow Y ; T: \mathbb{P} Y \bullet \\
& R \triangleright T=\{x: X ; y: Y \mid x \underline{R} y \wedge y \notin T \bullet x \mapsto y\}
\end{aligned}
$$

Name
\oplus－Overriding

Definition

$$
\begin{aligned}
& {\left[\begin{array}{l}
{[X, Y] \xlongequal[(X \leftrightarrow Y) \times(X \leftrightarrow Y) \rightarrow(X \leftrightarrow Y)]{ }} \\
\quad-\oplus-:(X) \\
\forall Q, R: X \leftrightarrow Y \bullet \\
Q \oplus R
\end{array}\right)(((\operatorname{dom} R) \leftrightarrow Q) \cup R}
\end{aligned}
$$

Name

$\rightarrow \quad-\quad$ Partial functions
$\longrightarrow \quad-\quad$ Total functions
$\longrightarrow \quad-\quad$ Partial injections
$\succ \quad-\quad$ Total injections

+ －Partial surjections
$\rightarrow-$ Total surjections
$\longrightarrow-$ Bijections

Definition

$X \mapsto Y==\left\{f: X \leftrightarrow Y \mid\left(\forall x: X ; y_{1}, y_{2}: Y \bullet\right.\right.$

$$
\left.\left.\left(x \mapsto y_{1}\right) \in f \wedge\left(x \mapsto y_{2}\right) \in f \Rightarrow y_{1}=y_{2}\right)\right\}
$$

$X \longrightarrow Y==\{f: X>Y \mid \operatorname{dom} f=X\}$
$X \nrightarrow Y==\left\{f: X \mapsto Y \mid\left(\forall x_{1}, x_{2}: \operatorname{dom} f \bullet f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}\right)\right\}$
$X \longmapsto Y==(X \longrightarrow Y) \cap(X \longrightarrow Y)$
$X \nrightarrow Y==\{f: X \nmid Y \mid \operatorname{ran} f=Y\}$
$X \rightarrow Y==(X>Y) \cap(X \longrightarrow Y)$
$X \longmapsto Y==(X \longrightarrow Y) \cap(X \succ Y)$

4．2 Relations

Name

$$
\begin{aligned}
& \leftrightarrow-\text { Binary relations } \\
& \mapsto-\text { Maplet }
\end{aligned}
$$

Definition
$X \leftrightarrow Y==\mathbb{P}(X \times Y)$

$$
\left[\begin{array}{l}
{\left[\begin{array}{l}
{[X, Y] \bar{"}} \\
-\mapsto-X \times Y \rightarrow X \times Y \\
\\
\forall x: X ; y: Y \bullet \\
\\
x \mapsto y=(x, y)
\end{array}\right.}
\end{array}\right.
$$

Description

If X and Y are sets，then $X \leftrightarrow Y$ is the set of binary relations between X and Y ．Each such relation is a subset of $X \times Y$ ．The＇maplet＇notation $x \mapsto y$ is a graphic way of expressing the ordered pair (x, y) ．
The definition of $X \leftrightarrow Y$ given here repeats the one given on page 88 ．

Name

dom，ran－Domain and range of a relation

Definition

$=[X, Y] \overline{\overline{~ d o m ~}:(X \leftrightarrow Y) \rightarrow \mathbb{P} X}$
$\operatorname{ran}:(X \leftrightarrow Y) \rightarrow \mathbb{P} Y$
$\forall R: X \leftrightarrow Y$ 。
$\operatorname{dom} R=\{x: X ; y: Y \mid x \underline{R} y \bullet x\} \wedge$ $\operatorname{ran} R=\{x: X ; y: Y \mid x \underline{R} y \bullet y\}$

Name

N	- Natural numbers
\mathbf{Z}	- Integers
,,$+- *$, div, mod	Arithmetic operations
$<, \leq, \geq,>$	- Numerical comparison

Definition
[Z]

$$
\begin{aligned}
& \begin{array}{l}
-\operatorname{div}_{-,}=\mathrm{mo} \\
-: \mathbf{Z} \rightarrow \mathbf{Z}
\end{array} \\
& \left.-_{-}<_{-},_{-} \leq_{-} \geq_{-},_{-}\right\rangle_{-}: \mathbf{Z} \leftrightarrow \mathbf{Z}
\end{aligned}
$$

definitions omitted ...
$\mathbb{N}==\{n: \mathbf{Z} \mid n \geq 0\}$
Name
$\min , \max -$ Minimum and maximum of a set of numbers

Definition

```
\(\min : \mathbb{P}_{1} \mathbb{Z} \rightarrow \mathbf{Z}\)
\(\max : \mathbb{P}_{1} \mathbf{Z} \longrightarrow \mathbf{Z}\)
    \(\min =\left\{S: \mathbb{P}_{1} \mathbf{Z} ; m: \mathbf{Z} \mid\right.\)
    \(m \in S \wedge(\forall n: S \bullet m \leq n) \bullet S \mapsto m\}\)
    \(\max =\left\{S: \mathbb{P}_{1} \mathbf{Z} ; m: \mathbf{Z} \mid\right.\)
    \(m \in S \wedge(\forall n: S \bullet m \geq n) \bullet S \mapsto m\}\)
```


Definition

$$
\begin{aligned}
& \operatorname{seq} X==\{f: \mathbb{N} \Perp X \mid \operatorname{dom} f=1 \ldots \# f\} \\
& \operatorname{seq}_{1} X==\{f: \operatorname{seq} X \mid \# f>0\} \\
& \text { iseq } X==\operatorname{seq} X \cap(\mathbb{N} \nleftarrow X)
\end{aligned}
$$

Definition

```
___ : seq X 尔eq}X->\operatorname{seq}
rev : seq X}->\operatorname{seq}
\foralls,t:\operatorname{seq}X\bullet
    s^t}=s\cup{n:\operatorname{dom}t\bulletn+#s\mapstot(n)
\foralls:\operatorname{seq}X\bullet
    revs=(\lambdan:\operatorname{dom}s\bullets(#s-n+1))
```

Definition


```
\foralls: seq}\mp@subsup{|}{1}{}X -
    head s=s(1)}
    head s=s(1)\wedge
    tail s}=(\lambdan:1\ldots#s-1\bullets(n+1))
    fronts=(1..#s-1)\triangleleft
```


Definition

```
=[X]\Longrightarrow 
- - - : seq X }\times\mathbb{P}X->\operatorname{seq}
squash: (N, }\longrightarrowX)->\operatorname{seq}
\forallU:\mathbb{PN};
    U}\upharpoonlefts=\operatorname{squash}(U\trianglelefts
    \foralls:\operatorname{seq}X;V:\mathbb{P}X\bullet
    s\V=squash(s\trianglerightV)
    \forallf: N
    squashf}=f\circ(\mup:1..#f\multimap\operatorname{dom}f|p\circ\mathrm{ succ }\circ\mp@subsup{p}{}{~}\subseteq(-<-)
```

Name

$$
\begin{aligned}
& \text { prefix }- \text { Prefix relation } \\
& \text { suffix }- \text { Suffix relation } \\
& \text { in }- \text { Segment relation }
\end{aligned}
$$

Definition


```
- prefix_,_su
    s prefix t\Leftrightarrow(\existsv:\operatorname{seq}X\bullets^v=t)\lambda
    s suffix t}\Leftrightarrow(\existsu:\operatorname{seq}X\bulletu^s=t)
    s in t\Leftrightarrow(\existsu,v: seq X\bulletu~s~v=t)
```

$-\Delta$ State $[X, Y$
State ${ }^{\prime}[X, Y]$
$\left[\begin{array}{l}\left.\text { } \begin{array}{l}\text { State } \\ \text { State } \\ \text { State }^{\prime} \\ \hline \theta \text { State }=\text { State }^{\prime}\end{array}\right]\end{array}\right.$

Ref:

The Z Notation:

A Reference Manual

Second Edition

J. M. Spivey

Programming Research Group
University of Oxford

Based on the work of
J. R. Abrial, I. J. Hayes, C. A. R. Hoare,

He Jifeng, C. C. Morgan, J. W. Sanders,
I. H. Sørensen, J. M. Spivey, B. A. Sufrin

